Innovative Manufacturing Processes

Tool Condition Monitoring (TCM) in Micro-Milling

Micro-milling utilizing smaller cutting tools developments and higher speeds as to meet machining trends for increasing accuracy and product miniaturization

Major problems for micro-milling are unpredictable cutting tool life and premature tool failure

Two main TCM groups for Micro-milling:

- Direct methods:
 - Optical sensing
- Indirect methods:
 - -Cutting forces
 - -Acoustic emissions (AE)
 - Tool/part vibrations

Fusion of sensorial signals could be used for the TCM in micro-milling:

- Acceleration sensor: spindle vibrations
- AE sensor: tool failure or chip breakage

REF: Stavropoulos, P., K. Salonitis, A. Stournaras, J. Pandremenos, J. Paralikas and G. Chryssolouris, "Advances and Challenges for tool Condition Monitoring in Micro-Milling", Proceedings of the IFAC Workshop on Manufacturing Modelling, Management and Control, Budapest, Hungary, (November 2007), pp. 157-162.

Innovative Manufacturing Processes

Experimental Investigation of Micro-milling Process Quality

Micro-milling process quality is difficult and more challenging to be controlled. Measurement of the average surface roughness Ra (μm) .

Use of matrix of experiments L_9 (3⁴):

- Determination of effects of main cutting parameters on the average surface roughness
- Optimum level values for minimum average surface roughness

Factors affecting experiments:

- A. Tool diameter (mm)
- **B.** Rotational speed (RPM)
- C. Feedrate (mm/sec)
- D. Depth of cut (mm)

Calculation of signal-to-noise (S/N) ratio:

ηi = -10 log10(average of the
squares of the Ra in the
experiment i)

Implementation of ANOM and ANOVA analyses for calculation of the optimum value of each factor, and their responsibility (%) on average surface roughness (µm)

