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ABSTRACT 

Appropriate forecasting of commodity futures price returns is of crucial importance to achieve 

hedging effectiveness against the returns volatility risk. This paper presents a nonparametric 

dynamic recurrent wavelet neural network model for forecasting returns of Shanghai Futures 

Exchange (SHFE) copper futures price. The proposed model employs a wavelet basis function as 

the activation function for hidden-layer neurons of the neural network. The aim of this arrangement 

is to incorporate the fractal properties discovered in futures price return series. In the wavelet 

transform domain, fractal self-similarity information of the returns series over a certain time scale 

can be extracted. Input variables are analyzed and selected to facilitate effective forecasting. 

Statistical indices such as normal mean square error (NMSE) are adopted to evaluate forecasting 

performance of the proposed model. The forecasted result shows that dynamic wavelet neural 

network has good prediction properties compared with traditional linear statistical model such as 

ARIMA and other neural network forecasting models.  

KEYWORDS 

Wavelet Neural Networks, SHFE Copper Futures, Forecasting, Financial Time Series, Fractal 

Market  

1. INTRODUCTION 

Copper is an important material for industrial 

production and yet its volatile price movement has 

been a major concern of the manufacturing industry 

in the past few years. Some practitioners choose to 

use copper’s exchange-traded commodity futures for 

hedging against such price volatility. The 

availability of an effective approach for forecasting 

copper futures price is crucial in the performance of 

such hedging in order to optimize production plans 

or investment portfolios. 

Since China is the world’s largest consumer of 

copper, Shanghai Futures Exchange (SHFE) has 

hosted active trading of copper futures contracts and 

become an important venue for deciding the market 

price of copper price. Therefore, the study of the 

price fluctuation of SHFE copper futures has 

assumed importance as it is a prerequisite for 

effective forecasting. This study develops a dynamic 

recurrent wavelet neural network model for 

forecasting the returns of SHFE copper futures 

prices. The model will try to minimise forecasting 

errors and enhance forecasting capability compared 

with other approaches. 

    The popular view of commodity futures prices is 

due the theory of storage originating in the work of 

Kaldor (1939), Working (1948), and Brennan 

(1958). They try to explain the difference between 

synchronous spot and futures commodity prices in 

terms of storage carrying cost and convenience yield 

on inventory. The theory is further developed by 

Gibson and Schwartz (1990a), Miltersen and 

Schwartz (1998), and Schwartz (1997), etc. into 
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term structure commodity futures price models. 

These models are based on storage theory. However, 

they do not seem to possess the flexibility in 

explaining futures price fluctuation. 

Since the simplest random walk model is proved 

to perform better than many complex structural 

models in financial time series forecasting (Meese 

and Rogoff, 1983, 1986), researchers have started 

using time series analysis to forecast commodity 

futures price (Taylor, 1986). Numerous studies have 

found that univariate time series such as Box-

Jenkins ARIMA model performs well in forecasting 

commodity futures prices (Lawera, 2000). Time 

series analysis is useful in forecasting but lacks an 

economic foundation. In this paper, an ARIMA 

model of copper futures price will be applied as a 

benchmark for comparing with the proposed model. 

Commodity futures prices are not only 

determined by supply and demand but are also 

susceptible to inter-market capital movements, 

political developments and so on. These factors 

contribute to strongly fluctuating and non-linear 

price behaviours. Since neural networks have a high 

level of nonlinear approximation and adaptive self-

learning capabilities, they offer enormous potential 

for the construction of a nonlinear forecasting model 

of commodity futures prices based on certain facts 

dataset. The use of neural network for forecasting 

various commodity or commodity futures prices has 

been extensively studied, for example, by 

Grudnitski and Osburn (1993), and Zou etc., (2007). 

However, most existing studies on copper futures 

prices have used simple Back-Propagation neural 

networks (BPNN) in their forecasting models. A 

novel recurrent neural network forecasting model is 

proposed in this paper. It has input-output feedback 

and hidden neuron self-feedback incorporated into 

BPNN. These feedback loops create internal states 

of the network which allows it to exhibit dynamic 

temporal behaviour, and hence enhance the 

nonlinear approximation ability. 

    An important feature of the forecasting approach 

proposed in this paper lies in the use of wavelets as 

the activation function for feature detection by the 

neural network. Wavelet can be used to approximate 

target functions with good effect. The combination 

of wavelets and neural network can form a powerful 

forecasting model. Wavelets were first integrated 

with neural network by Zhang and Benveniste 

(1992), and various architectures are then developed 

by Pati and Krishnaprasad (1993), Zhang, J. (1995), 

Zhang (1997), Billings (2005), etc. Commodity 

futures prices have been proved to possess self-

similarity and self-affinity structure, based on the 

fractal market hypothesis and fractal theory 

(Mandelbrot, 1982; Edgar, 1996). Since wavelet 

analysis procedure is implemented with temporal 

translation and dilation of a mother wavelet, they are 

found to be powerful in approximating commodity 

prices. The proposed model employs wavelet basis 

function as the activation function of hidden-layer, 

whose purpose is to incorporate the fractal 

properties of SHFE copper futures price. 

    This paper is organized as follows. In Section 2, 

input data pre-processing and selection is discussed 

for constructing a forecasting model expression. In 

Section 3, the basics of wavelet transform are first 

described.  Then, a proper wavelet function is 

chosen for better fitting to the target time series. 

This is followed by the description of the 

architecture and training of proposed model. Section 

4 gives the forecasting results of SHFE copper 

futures price returns using proposed model. The 

concluding remarks are given in Section 5. 

2. FORECASTING MODEL EXPRESSION 
AND INPUT DATA SELECTION 

As mentioned in Section 1, there exist two kinds of 

data that can be used to construct a forecasting 

model of copper futures prices. One is the external 

data, which include copper futures storage level and 

inter-market influence. The other is copper futures 

price historical data. As such, the nonlinear 

forecasting model is constructed as follows: 
1 2

1 2 1 1 1( ) ( , ,..., ) ( , , ..., ) ( )m

t t t l t t tp t f p p p g x x x e t− − − − − −= + +   

(1) 

where ( )p t is the copper futures price series; 

1 2
( , ,..., )

t t t n
p p p− − −

 the historical data of the ( )p t ; 

(.)f  the representation of a nonlinear auto-

regression function; 1 2

1 1 1( , ,..., )m

t t tx x x− − −
 the external 

factors; (.)g  a nonlinear mapping function and ( )e t  

the error between the forecasted and real prices. 

It is obvious that the above dataset are non-

stationary time series, which have to be scaled in 

order to have their non-stationary components 

removed. Such scaling is required for reducing the 

search space of the neural networks, and help to 

obtain the optimal coefficient easily. Logarithmic 

first difference is applied to transform the non-

stationary time series into a stationary series 

(McNelis, 2005). Considering that prices change 

little or even do not change between two 

neighbouring days, the logarithmic first difference 

of every five days is taken. The following scaling 

function is applied: 

5 5
5

5 5

log log log log(1 )t t t t
t t t

t t

p p p p
p p p

p p

− −
−

− −

− −
∆ = − = + ≈

     (2) 

So, log
t

p∆  has the meaning of weekly price return 

rate. This approach will forecast the weekly return 

rate of copper futures price instead of the prices. 



 

111 

 

Actually, after the forecasted value of the rate is 

determined, the copper futures price can be readily 

obtained by applying the scaling function. Then 

equation (1) can be scaled and represented as 

follows: 
1 2

1 2 1 1 1( ) ( , ,..., ) ( ( ), ( ),..., ( )) ( )m

t t t l t t tr t f r r r g r x r x r x e t− − − − − −= + +
 

    (3) 

Five most influential external factors are 

selected to form the input vectors 1 2

1 1 1( , ,..., )m

t t tx x x− − −
. 

First, Changjiang copper spot price in China and 

copper futures inventory level in the SHFE 

appointed warehouse are chosen based on the 

traditional storage price theory. They are denoted by 

SP and INV respectively. Then, London Metal 

Exchange (LME) three-month copper price is 

chosen since LME and SHFE copper futures prices 

have been shown to exhibit significant correlation 

(Zhang, 2003). WTI crude oil price is also included 

because crude oil can impact economy welfare and 

indirectly influence the copper futures price. Since 

crude oil and other energy sources are priced in US 

dollar, EUR/USD exchange rate is also adopted as 

an input, which is denoted by EUR.  The input and 

output variables are listed in table 1. 

Table 1 – Input and output variables 

 Denotation  Equations 

Input  ( )r P l−  

1...... ;l l=  

( )5 ( 1) -5100 ln - lnt l t lp p− ⋅ − ⋅⋅  

r(INV) ( )5
100 ln ln

t t
inv inv −⋅ −  

r(SP) ( )5100 ln lnt tsp sp −⋅ −  

r(LME) ( )5100 ln lnt tlme lme −⋅ −  

r(WTI) ( )5100 ln lnt twti wti −⋅ −  

r(EUR) ( )5100 ln lnt teur eur−⋅ −  

Output  r(P) ( )5100 ln - lnt tp p+⋅  

3. DYNAMIC WAVELET NEURAL 
NETWORKS  

3.1. WAVELET TRANSFORM 

This section will briefly describe wavelet transform, 

and discuss how wavelets can be applied to 

reconstruct functions or data series. Wavelet 

transform can be divided into two categories, which 

include continuous wavelet transform (CWT) and 

discrete wavelet transform (DWT). 

The continuous wavelet transform 

( ),fCWT a τ of function ( )f t  is given by 

Daubechies, (1992): 

( ) ( ) ( ),

1
,  f a

t
CWT f t t f t dt

aa
τ

τ
ψ ψ ∗

ℜ

− = = ⋅  
 ∫    (4) 

where ( )tψ  is the mother wavelet function, and 
2

( ) ( )t Lψ ∈ ℜ . Its Fourier transform has to satisfy 

the following condition: 

( )ˆ
C dψ

ψ ω
ω

ωℜ

= < ∞∫                          (5) 

a  and τ  are dilation and translation parameter 

respectively. In CWT, a  and τ vary continuously 

over ℜ  (with the constraint 0a ≠ ). By scaling and 

shifting the mother wavelet, a set of wavelet basis 

functions are obtained as follows: 

( ),

1
;    ,a

t
t a

aa
τ

τ
ψ ψ τ

− = ∈ℜ 
 

              (6) 

Equation (4) transforms ( )f t  from the time 

domain into the wavelet domain ( ,a τ  domain). In 

the wavelet domain, frequency information at 

certain time can be obtained. It means that in the 

time domain, wavelet basis functions can be used to 

approximate both the smooth global variation and 

sharp local variation of the function. ( )f t  can be 

reconstructed from wavelet basis functions by using 

an inverse wavelet transform, which is given as 

follows: 

( ) ( )20

1 1
,f

da t
f t CWT a d

C a aaψ

τ
τ ψ τ

+∞ +∞

−∞

− = ⋅  
 ∫ ∫    (7) 

    In DWT, both a  and τ  take discrete values only. 

For binary representation, it is convenient to sample 

a  and τ  based on the so called “dyadic” grid. This 

special case of DWT is defined as dyadic wavelet 

transform. In this case, a  and τ  are represented as: 

,
2 ,    2 ;      ,j j

j j k
a k j k Zτ− −= = ⋅ ∈             (8) 

Thus the definition of dyadic discrete wavelet is 

( ) ( )2
, 2 2 ;    ,

j

j

j k t t k j k Zψ ψ
− −= ⋅ − ∈           (9) 

where j  represents the number of wavelet basis 

functions, and k  determines the time position of the 

wavelets. 

    Both CWT and DWT can be incorporated into 

neural networks as activation function. The existing 

wavelet neural networks can be categorized into two 

types (Billings, 2005). The adaptive wavelet neural 

network has wavelets as the activation function, 

which is obtained by performing CWT. The 

unknown parameters of such network include the 

weighting coefficients of the network and the 

dilation and translation factors of the wavelets. The 

other type is fixed grid wavelet neural network, 

whose activation function is obtained from the 

DWT. In such a wavelet neural network, the 

position and dilations of wavelets are predetermined, 
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and only the weighting coefficients need to be 

optimized. 

In this paper, an adaptive wavelet neural 

network is developed to achieve the desired 

flexibility and for the accurate reconstruction of 

continuous time series. For practical implementation 

and computational efficiency, the inverse wavelet 

transform (equation (4)) can be expressed as 

( ) ( ), ,

,

j k j k

j k

f t w tψ= ⋅∑                  (10) 

Equation (10) is used as the expression of nonlinear 

mapping function 
1 2

( , ,..., )
t t t n

f r r r− − −
 in equation (3). 

So, the model can track the self-similarity and self-

affinity properties of the return series, and result in a 

better approximation. 

3.2. WAVELET FUNCTION SELECTION 

An appropriate wavelet has to be selected in order to 

better reconstruct ( )f t . Since wavelets will be 

employed as activation function in neural networks, 

the wavelet functions have to be differentiable and 

the Mexican hat wavelet (See figure 1) function is 

chosen. This wavelet function is commonly used in 

time series decomposition and reconstruction. Its 

function is expressed as follows: 

( ) ( )
2

2 cos 5
t

t Ce tψ
−

=                 (11) 

Mexican hat wavelet offers other advantages for 

reconstructing ( )f t . First, Mexican hat wavelet is 

based on CWT, is symmetrical, and provides an 

exact time frequency analysis. This makes it a good 

choice to process data that vary continuously in time. 

Second, Mexican hat wavelet has a rapid vanishing 

function, which leads to an accurate and efficient 

approximation of target time series. 
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Figure 1 – Mexican hat wavelet 
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Figure 2 – Structure of proposed recurrent wavelet neural network 

3.3 ARCHITECTURES OF A RECURRENT 
WAVELET NEURAL NETWORK (RWNN) 

As mentioned above, the returns of SHFE copper 

futures price originate from the storage theory, and 

are inevitably influenced by inter-market factors. In 

order to extract useful information from related 

factors for effective forecasting, commonly used 

sigmoid functions are adopted to produce a 

nonlinear mapping from these databases to target 

returns. The sigmoid active function used in the 

conventional neural network part of the model is 

expressed as follows: 

( ) ( )( ) 1 / 1 exp ( )j jg x t x t = + − 
 

5

,

1

( ) ( )cn

j c j c

c

x t w r t
=

= ⋅∑  

( ), ( ), ( ), ( ), ( )cn

cr r I�V r SP r LME r WTI r EUR=    (12) 
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where 
j

x  is the input of hidden neuron j  in the 

conventional neural network part. cn

cr  is the input of 

the conventional neural network part as listed in 

table 1. 

In order to incorporate dynamic temporal 

behaviour and enhance the nonlinear approximate 

ability, a dynamic wavelet neural network with 

feedback topology is developed. In this model, the 

feed-forward part consists of a wavelet network 

combined with a conventional neural network using 

sigmoid activation function. The feedback part 

includes input-output feedback loop and wavelet 

neuron self-feedback loop. Therefore, the nonlinear 

estimator in the proposed forecasting model can be 

expressed as follows: 

1 1

( )
( ) ( ) ( ( ))

M �
i i

i i j j

i ji

y t
r t w w g x t b

a

τ
ψ

= =

−
= ⋅ + ⋅ +∑ ∑  

, , ,

1

( ) ( ) ( 1) ( 1)
l

wn

i u i u o i s i i

u

y t w r t w r t w y t
=

= ⋅ + ⋅ − + ⋅ −∑  

( ) ( )( ) 1 ,......wn

ur t r P r P l= − −             (13) 

where 
iy  is the input of hidden neuron j  of the 

wavelet neural network part. wn

ur  is the input of the 

conventional neural network part, listing before in 

table 1. 

The architecture of the proposed dynamic 

recurrent neural network model is shown in figure 2. 

3.4 TRAINING THE PROPOSED NEURAL 
NETWORK 

In order to obtain all the parameters in the model, 

i.e. weights, bias, and translation and dilation 

parameters, a learning algorithm is used for training 

the network. In this paper, an improved real-time 

training algorithm for recurrent networks called 

real-time recurrent learning algorithm (RTRL) 

(Williams e.a., 1995) is adopted due to of its fast 

convergence for an accurate training. 

RTRL is a real-time back-propagation (BP) 

gradient descent training algorithm. It does not 

employ the error measure, which is obtained by 

summing up the error between real returns and 

model output (equation (14)) during the training 

period. Instead, only the instantaneous error 

measure (see equation (15)) is used for calculating 

parameter updates at each time instant of the 

continually running network. 

( )
0

21
( ) ( )

2

nt

Total real

t t

E r t r t
=

= −∑                (14) 

( )21
( ) ( ) ( )

2
realE t r t r t= −                  (15) 

    So, at every time t, the parameters are adapted 

according to 

( )
.( )

.

E t
par t

par
η

∂
∆ = − ⋅

∂
                    (16) 

where η  is the learning rate. Thus in this 

model, the added value of each parameter is 

calculated in the following equations: 

( ) ( )
( ( ) ( ))

( )
real

E t r t
b r t r t

r t b
η η

∂ ∂
∆ = − ⋅ ⋅ = ⋅ −

∂ ∂
      (17) 

( ) ( )
( ( ) ( )) ( )

( )
j real j

j

E t r t
w r t r t g t

r t w
η η

∂ ∂
∆ = − ⋅ ⋅ = ⋅ − ⋅

∂ ∂
 

(18) 

( ) ( )
( ( ) ( )) ( )

( )
i real i

i

E t r t
w r t r t t

r t w
η η ψ

∂ ∂
∆ = − ⋅ ⋅ = ⋅ − ⋅

∂ ∂
  (19) 

,

,

( )( ) ( )

( ) ( )

        ( ( ) ( )) ( ) ( )

j

c j

j c j

cn

real j j c

g tE t r t
w

r t g t w

r t r t w g t r t

η

η

∂∂ ∂
∆ = − ⋅ ⋅ ⋅

∂ ∂ ∂

′= ⋅ − ⋅ ⋅ ⋅

    (20) 

( ), , , ,

,

,

,

. , , ,

,

( )( ) ( )
,

( ) ( )

( 1)
        ( ( ) ( )) ( ) (

( 1)
            ( ) ( 1) ( 1))

i
x i u i s i o i

i x i

i
real i i s i

x i

wn

o i x u u x s i x o

x i

tE t r t
w w w w

r t t w

t
r t r t w t w

w

r t
w r t t r t

w

ψ
η

ψ

ψ
η ψ

δ δ ψ δ

∂∂ ∂
∆ = − ⋅ ⋅ ⋅

∂ ∂ ∂

∂ −
′= ⋅ − ⋅ ⋅ ⋅ ⋅ +

∂

∂ −
⋅ + ⋅ + ⋅ − + ⋅ −

∂

 

, . ,

, , ,

, ,

( ) ( 1) ( 1)
( ) ( ( )

               ( 1) ( 1))

wni i
i s i o i x u u

x i x i x i

x s i x o

t t r t
t w w r t

w w w

t r t

ψ ψ
ψ δ

δ ψ δ

∂ ∂ − ∂ −′= ⋅ ⋅ + ⋅ + ⋅ +
∂ ∂ ∂

⋅ − + ⋅ −
 

, . ,

, , ,

, ,

( 1)( ) ( 1)
( ) ( ( )

             ( 1) ( 1))

wni
i i s i o i x u u

x i x i x i

x s i x o

tr t r t
w t w w r t

w w w

t r t

ψ
ψ δ

δ ψ δ

∂ −∂ ∂ −′= ⋅ ⋅ ⋅ + ⋅ + ⋅ +
∂ ∂ ∂

+ ⋅ − + ⋅ −
 

, ,

(0) (0)
0;    0i

x i x i

r

w w

ψ∂ ∂
= =

∂ ∂
                  (21) 

2

( )( ) ( )

( ) ( )

      ( ( ) ( )) ( ) /

i

i

real i i

tE t r t
a

r t t a

r t r t w t a

ψ
η

ψ

η ψ

∂∂ ∂
∆ = − ⋅ ⋅ ⋅

∂ ∂ ∂

′= − ⋅ − ⋅ ⋅

        (22) 

( )( ) ( )

( ) ( )

      ( ( ) ( )) ( )

i

i

real i i

tE t r t

r t t

r t r t w t

ψ
τ η

ψ τ

η ψ

∂∂ ∂
∆ = − ⋅ ⋅ ⋅

∂ ∂ ∂

′= − ⋅ − ⋅ ⋅

             (23) 

    In order to prevent the RTRL process from being 

trapped in a local maximization, momentum factors 

are introduced for adjusting the network parameters. 

Taking 
jw  for brief description, the momentum 

factor of 
jw  can be expressed as: 

( ( ) ( 1))
jw j jm k w t w t= ⋅ − −                 (24) 

Then the jw (t+1) is updated in accordance with the 

following rules: 
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( 1) ( ) ( 1)
jj j j ww t w t w t k m+ = + ∆ + + ⋅     (25) 

4. PERFORMANCE EVLUATION OF 
DYNAMIC RECURRENT WAVELET 
NEURAL NETWORK MODEL 

4.1. DATA SETS 

The input and output data are obtained and listed in 

table 1 for model evaluation. 

First, the daily close price of copper futures 

and the INV are collected from the SHFE official 

website. Unlike LME, SHFE have the copper 

futures contracts expired in each month of the year. 

The exact three-month-to-maturity contracts may 

not be available on a given day. Since every trading 

day has different futures prices, in order to deal with 

the discontinuity of futures prices, the nearest to the 

three-month-to-maturity contract is used. The 

nearest to the three-month-to-maturity contract is 

selected for its actively trading. Since the first 

delivery day of a contract is the first business day of 

each month, at the beginning of each month, a 

nearest to the three-month-to maturity contract is 

selected and kept for a month. Then, at the 

beginning of the next month, the following nearest 

to the three-month-to-maturity contract will be 

selected for replacing the previous one. In this way, 

a series of continuous copper futures price can be 

formed.  

Second, the daily close prices of LME, SP, 

WTI and EUR are collected from the website of 

Bloomberg.  Third, the weekly returns series of the 

above obtained price are computed using the 

equations listing in table 1. 

The sampling time window is from January 4
th
, 

2005 to November 9
th
, 2010. A total of 1,400 

samples are obtained. There exists significantly rise 

and fall economic cycle during this period, which 

make the proposed forecasting approach more 

comprehensive and meaningful. The weekly returns 

of SHFE copper futures price during this time 

window is shown in figure 3. 
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Figure 3 –Weekly returns of SHFE copper futures price 

4.2 FINDING THE INPUT DIMENSION 

The sample autocorrelation function (ACF) and 

sample partial autocorrelation function (PACF) are 

employed to determine the input dimension of the 

auto-regression part of the model. Figure 4 is 

plotted using weekly return rate in figure 3. The 

input dimension is found to be four. 
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Figure 4 – ACF and PACF of copper futures price returns 

4.3 FORECASTING ACCURATE 
ASSESSMENT 

Several error measurements have been chosen to 

evaluate the performance of proposed model. 

Normalized mean square error (NMSE) and mean 

absolute error (MAE) are adopted to evaluate the 

error between target returns and the model output. 

Direction sign (DS) is adopted to show the hit ratio, 

defined by the model’s output moving in the same 

direction as target returns. Table 2 lists above 

performance measurements and their equations. 

Table 2 – Performance measurements 

Measurements Equations 

NMSE ( )

( )

2

1

2 1

1

1
ˆ

1
 ; 

1

1

n

i i n
i

in
i

i

i

y y
n

y y
n

y y
n

=

=

=

⋅
−

= ⋅
⋅ −

−

∑
∑

∑

 

MAE 

1

1
ˆ

n

i i

i

y y
n =

⋅ −∑  

DS ( )( )1 1

1

ˆ ˆ1 0100
; 

0

n
i i i i

i i

i

y y y y
d d

n otherwise

− −

=

 − − ≥
⋅ = 


∑  

4.4 FORECASTING RESULTS 

In this approach, a fixed forecasting scheme is 

adopted. The scheme involves training and 

estimating parameters of the proposed model on the 

first 1,000 data in the dataset, and uses these 

estimates to produce all the forecasts for the 
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following out-of-sample data. Figure 5 shows the 

comparisons of the following 200 out-of-sample 

testing data and the estimated outputs using the 

proposed model. Figure 5(a) shows the forecasting 

targets and Figure 5(b) shows the absolute 

forecasting error. 
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Figure 4 – comparison of out-of-sample and estimation data 

Three different out-of-sample lengths (listing 

in table 3) are chosen for testing the forecasting 

performance of the proposed model. Variance 

testing data lengths are applied for testing the near-

term and long-term forecasting ability of the 

proposed model. 

Table 3 – In-sample and out-of-sample time windows 

Sample Time windows 

In 

sample 

data 

Feb. 1
st
, 2005 to Aug 18

th
, 2009 

(1000 data) 

Out of 

sample 

data 

Aug. 19
th
, 2009 to Aug. 11

st
, 2009 

(100 data) 

Aug. 19
th
, 2009 to Jan. 7

th
, 2010 

(200 data) 

Aug. 19
th
, 2009 to Nov. 9

th
, 2010 

(400 data) 

Three other conventional forecasting models are 

also set up for comparing with our proposed model. 

The three models are feed-forward wavelet neural 

network model (WNN), fully recurrent BP neural 

network (FRNN), and ARIMA model. In figure 4, 

ACF is trailed and PACF truncated at lag 1. It 

indicates the need for an AR (1) model out of 

ARIMA family models. The results due to these 

comparisons are listing in table 4, 5 and 6. 

Table 4 – Performance comparison when forecasting 100 

data 

 RWNN WNN FRNN AR(1) 

NMSE 0.8993 1.1070 1.3425 1.6657 

MAE 4.3104 4.8678 5.0864 5.9252 

DS 66 59 58 56 

Table 5 – Performance comparison when forecasting 200 

data 

 RWNN WNN FRNN AR(1) 

NMSE 0.9593 1.3290 1.4327 1.8532 

MAE 3.6325 4.5435 4.6325 7.2353 

DS 63 55 56 54 

Table 6 – Performance comparison when forecasting 400 

data 

 RWNN WNN FRNN AR(1) 

NMSE 1.0625 1.5242 1.5076 1.9543 

MAE 3.6982 5.0634 4.8735 7.8963 

DS 62 54 56 53 

    The forecasting results in table 4, 5 and 6 show 

that the dynamic recurrent wavelet model 

outperforms other neural network and ARIMA 

model both in value accuracy and directional 

accuracy. The model achieves the best performance 

in the near- and long-term forecasting. 

5. CONCLUSIONS 

 

This research has advanced the study of 

conventional neural network in forecasting returns 

of SHFE copper futures price by presenting a 

dynamic recurrent neural network model. The 

proposed model combines the feature detection 

property of wavelet and temporal memory 

behaviour of recurrent neural network for capturing 

the dynamics of copper futures returns and results in 

a better forecasting. The proposed model also 

considers the influence of exogenous factors and 

extracts useful information for assistant forecasting. 

The forecasting results show that the dynamic 

recurrent wavelet neural network model 

outperformed in the near- and long-term forecasting 

of returns of SHFE copper futures price compared 

to other conventional models. 
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