
Proceedings of DET2011 

7th International Conference on Digital Enterprise Technology 

Athens, Greece 

28-30 September 2011 

213 

 

AN INVENTORY AND CAPACITY-ORIENTED PRODUCTION CONTROL 
CONCEPT FOR THE SHOP FLOOR BASED ON ARTIFICIAL NEURAL 

NETWORKS  

Bernd Scholz-Reiter 
BIBA – Bremer Institut für Produktion und 
Logistik GmbH at the University of Bremen 

bsr@biba.uni-bremen.de 

Florian Harjes 
BIBA – Bremer Institut für Produktion und 
Logistik GmbH at the University of Bremen 

haj@biba.uni-bremen.de 
 
 

Jeanette Mansfeld 
BIBA – Bremer Institut für 
Produktion und Logistik 

GmbH at the University of 
Bremen 

man@biba.uni-bremen.de 

 Oliver Stasch 
University of Bremen 

o.stasch@uni-bremen.de 

ABSTRACT 

The constantly growing demand for customized and innovative products results in highly complex 

production processes. The corresponding large workload of the production planning and control 

systems strengthens the interest in flexible, adaptive and intelligent approaches for both 

manufacturing systems and the related production control. Methods from the field of artificial 

intelligence, such as software agents or artificial neural networks, have proven their applicability in 

this field. This paper presents a production control concept based on artificial neural networks for 

the inventory and capacity-oriented control of a shop floor. An example demonstrates the overall 

concept as well as the implementation and performance of the proposed control system  

KEYWORDS 

Production Control, Shop Floor, Capacity, Inventory, Artificial Neural Networks 

 

1. INTRODUCTION 

The customer-oriented production of multi-variant 

products with short production cycles plays an 

important role in today`s market (Schäfer et al., 

2004). This results in complex and dynamic 

production processes, which are difficult to handle 

for established production planning and control 

systems (Barata & Camarinha-Matos, 2005).  Due 

to the orientation to small series, single pieces and 

prototypes, shop floor productions have a particular 

demand for a continuous advancement of 

production control strategies and techniques.  

In this context, methods from the field of 

artificial intelligence, such as bio-inspired 

algorithms (Scholz-Reiter et al., 2008), software 

agents (Scholz-Reiter & Höhns, 2003) and artificial 

neural networks (Rippel et al., 2010) (Scholz-Reiter 

et al., 2010) have proven their applicability in 

production related tasks. At this, the application 

ranges from machine control (Kwan & Lewis, 

2000) over prediction purposes (Natarajan et al., 

2006) to the determination of suitable operational 

policies (Yildirim et al., 2006) (Chryssolouris et al., 

1991). 

This paper introduces a production control 

concept for the combined control of inventory levels 

and capacity utilization within a shop floor 

production. In this concept, artificial neural 

networks act as capacity and inventory controller in 

cascaded control loops. 
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The structure of the paper is as follows: The next 

section gives a short overview of artificial neural 

networks in general. Section 3 introduces the 

organizational form shop floor production and the 

generic shop floor model that underlies the 

experiments. Section 4 describes the overall control 

concept and the neural controllers it uses. An 

experimental validation of the concept by means of 

the previously described model follows in section 5. 

The paper closes with a conclusion basing on the 

obtained results and gives an outlook on future 

research. 

 

2. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks represent mathematical 

imitations of neural systems found in nature 

(Dreyfus, 2005). They consist of artificial neurons, 

also called nodes, and weighted links, also known 

as edges (Steeb, 2008). A typical neural network 

consists of three layers, an input layer, one or more 

hidden layers and an output layer (Haykin, 2008). 

At this point, the number of hidden layers depends 

on the type of network (Steeb, 2008). Figure-1 

depicts a schematic view of an artificial neuron. 

 

 

Figure - 1 Schematic view of an artificial neuron (Rippel et 

al., 2010) 

Within a neural network, the artificial neurons act as 

data processing units. They process input data, 

coming from other neurons or the environment, and 

forward the calculated results. Therefore, neural 

networks offer a fast and parallel data processing 

(Dreyfus, 2005). 

Further advantages of neural networks are a 

comparatively small modelling effort and the ability 

to learn from experience (Scholz-Reiter & Höhns, 

2003). This learning ability empowers neural 

networks to approximate complex mathematical 

coherences, which are not exactly describable or 

may be even unknown (Rippel et al., 2010). In this 

case, the networks act as a kind of black-box. 

The learning process can take place in three 

different ways. Supervised Learning is applicable, if 

data in form of matching input output pairs exist 

(Chaturvedi, 2008). Their presentation to the 

network triggers an adjustment of the internal 

connections in a way that every input generates the 

corresponding output. Reinforcement learning 

follows a similar approach. At this point, the 

network receives input and a feedback concerning 

the correctness of the result (Haykin, 2008). The 

exact desired output is not presented. Finally, 

Unsupervised or Self-organized Learning denotes a 

learning process without assistance. The neural 

network receives only input data and tries to 

approximate possible coherences within the 

presented pattern autonomously (Kohonen, 2001). 

In all of the three cases, the success of the 

learning procedure is verified by presenting an 

additional set of validation data. This avoids a 

merely memorising of the initial training data 

(Haykin, 2008). 

3. SHOP FLOOR PRODUCTION 

3.1 SHOP FLOOR PRI$CIPLE 

Shop floor production is a very dynamic and 

complex form of production. The manufacturing of 

prototypes, single pieces and small series results in 

a high degree of customization (Rippel et al., 2010). 

The production facility is organisationally divided 

into specialised workshops, such as a turnery, a 

sawmill and so on (Figure-2). Within the shop floor, 

work pieces can pass machines and workshops in 

any order (Slack et al., 2007). At this point, the 

machining sequence depends on the technical 

specifications of both the work piece and available 

workstations or machines (Rippel et al., 2010). 

Often, processing steps have a variable order or are 

optional. 

 

 

Figure – 2 Shop floor organization (Scholz-Reiter et al., 

2011) (Pfohl, 2010) 
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The resulting flexibility leads to complex material 

flows and highly dynamic production processes. As 

a result, scheduling within a shop floor is quite 

difficult and often referred to as the job shop or 

shop floor scheduling problem (Chen et al., 2008). 

The complexity of production planning and control 

systems in this field is correspondingly high. 

3.2 GE$ERIC SHOP FLOOR MODEL 

The evaluation of the control approach introduced 

in this paper takes place by means of a generic shop 

floor model. The model consists of nine technically 

different machines in four workshops (Figure-3). 

Every workshop contains an input buffer in front of 

the respective machines. 

During the simulation period, six different types 

of work pieces are manufactured. At this point, all 

work piece types run through every workshop. To 

reflect the general complexity and dynamics of a 

shop floor, the manufacturing steps for one of the 

work piece types is variable. Pieces of this type can 

pass the production stages in varying orders, while 

backflows are possible in workshop 3, as a 

consequence of quality effects. Further, the set-up 

and processing times differ for every work piece 

and machine. This depends on technical 

specifications and/or the sequence the work pieces 

arrive in. 

 

 

Figure – 3 Schematic view of the shop floor model 

The order release takes place in front of the first 

workshop. The size of the homogeneous lots 

amounts up to five work pieces. Finally, the 

commissioning forms the end of the production 

process. 

4. THE NEURAL CONTROL CONCEPT 

The proposed concept focuses on combined control 

of inventory levels and capacity utilization. At this, 

the capacity utilization denotes the time slice that a 

machine m processes a work piece or is set up for 

processing. The calculation is as follows: 

 

���  = ��� + 	��                     (1) 

 

1. CUm: Capacity utilization of machine m. 

2. PTm: Time slice, machine m works. 

3. STm: Time slice, machine m is set up. 

 

The inventory level bases on an average between 

the machine specific inventories of the considered 

workshop. Equation-2 defines the individual 

inventory calculation for every machine m: 
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1. Im: Inventory level of machine m 

2. PTi: Processing time for work piece i on machine 

m 

3. STi: Setup time for work piece i on machine m 

4. i: Current work piece i on machine m 

5. k: Number of work pieces within the buffer 

 

Within the shop floor, every workshop is equipped 

with one neural control network per control 

variable. Together, the neural controllers form a 

cascaded control structure, with the capacity control 

as the inner and the inventory control as the outer 

control loop. The inventory levels are decisive for 

the distribution of work pieces between the different 

workshops. The allocation of work pieces to 

machines inside a workshop follows the capacity 

utilization. 

In this context, the general control flow provides 

a transfer of work pieces depending on set-points 

for the inventory levels of workshops. 

Redistribution only takes place, if it does not exceed 

the desired limit. To avoid a standstill of individual 

workshops, a transfer is allowed in special cases, 

however. A special case occurs, when a compliance 

of the desired inventory would lead to a blockade in 

one or more workshops. Within a workshop, the 

capacity control assigns the work pieces waiting in 

the buffer to the available machines. 
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The neural inventory controllers

forward architecture. The precise design depends on 

the position of the considered workshop

material flow. In the following, the control network

of a workshop with three machine

example. The network has a 4:12:12:1 topology 

with four inputs, one output and two hidden layers 

with 12 neurons each. Figure-4 shows a schematic 

view of the corresponding network.

space reasons, a black-box replaces the detailed 

presentation of the hidden layers. This also refers to 

the approximation of possible coherences between 

the input and output data in a black

 

Figure – 4 Schematic view of a neural inventory network

The depicted network computes an inventory based 

factor (WKZ), which is determining for the 

distribution decision. Hence, i

inventory deviation for the three 

as the number of breaks for the previous

in the material flow. 

The deviation is defined as the quotient

desired and the actual inventory level.

this quotient instead of the difference leads to a 

normalization of the input values for the neural 

networks. Further, the quotient reflects the ratio 

between actual and desired inventories. T

simplifies the generalization of the neural networks, 

as absolute values always depend on closely 

restricted situations. 

The amount of breaks denotes the time

machines of the previous workshop

high amount of breaks is an indication 

overload. In this case, a redistribution can take place 

despite a possible exceeding of the inventory limits.

With regard to the example, this implies the 

following input variables: 

 

1. EBSm: Normalized inventory error

 

2. PAn-1: Amount of breakes for previous workshop

               n-1. 
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controllers have a feed-

forward architecture. The precise design depends on 

workshop within the 

following, the control network 

workshop with three machines will serve as an 

The network has a 4:12:12:1 topology 

with four inputs, one output and two hidden layers 

4 shows a schematic 

view of the corresponding network. Because of 

box replaces the detailed 

This also refers to 

the approximation of possible coherences between 

the input and output data in a black-box manner. 

 

of a neural inventory network 

computes an inventory based 

which is determining for the 

. Hence, it processes the 

 machines as well 

previous workshop 

ion is defined as the quotient between the 

ual inventory level. The use of 

this quotient instead of the difference leads to a 

normalization of the input values for the neural 

Further, the quotient reflects the ratio 

between actual and desired inventories. This 

simplifies the generalization of the neural networks, 

as absolute values always depend on closely 

aks denotes the time, the 

machines of the previous workshop are blocked. A 

aks is an indication for an 

overload. In this case, a redistribution can take place 

of the inventory limits. 

le, this implies the 

ormalized inventory error for machine m 

akes for previous workshop 

The corresponding neural network for the capacity 

control has a 6:12:12:3 topology. It processes six 

input values and computes a ranking for the

available machines. At this, the machine with the 

highest ranking gets 

(winner-takes-it-all) for machining

the neural capacity controller for the example 

workshop with three machines

 

Figure – 5 Schematic view of a neural capacity network

The controller processes the following input values:

 

1. tAZn + tRZn: Setup and processing time of the 

regarded work piece on machine 

 

2. eKZm: Current capacity utilization of machine 

 

 

3. YKZm: Ranking for the redistribution decision 

with regard to machine 

 

Both types of control networks run through a 

supervised learning procedure. 

validation data were recorded during test runs of 

shop floor model introduced in the previous section. 

During this runs, the control was based on simple 

priority rules. At this point, only redistribution 

decisions with the desired results found entrance in 

the training and validation database

pairs. 

5. EXPERIMENTAL VALI

The experimental validation comprises two 

simulation runs, simulating a production period

30 days each. Within both runs, 5000 orders run 

through the shop floor. As mentioned in section 3.2, 

every order comprises a lot of 1 up to 5 pieces. 

Main difference between the two setups is the 

The corresponding neural network for the capacity 

control has a 6:12:12:3 topology. It processes six 

input values and computes a ranking for the three 

available machines. At this, the machine with the 

 the respective work piece 

for machining. Figure-5 depicts 

the neural capacity controller for the example 

with three machines.  

 

ic view of a neural capacity network 

The controller processes the following input values: 

: Setup and processing time of the 

regarded work piece on machine m 

: Current capacity utilization of machine m 

: Ranking for the redistribution decision 

with regard to machine m 

Both types of control networks run through a 

supervised learning procedure. The learning and the 

recorded during test runs of the 

shop floor model introduced in the previous section. 

During this runs, the control was based on simple 

At this point, only redistribution 

decisions with the desired results found entrance in 

the training and validation database as input output 

5. EXPERIMENTAL VALIDATION 

The experimental validation comprises two 

, simulating a production period of 

Within both runs, 5000 orders run 

through the shop floor. As mentioned in section 3.2, 

comprises a lot of 1 up to 5 pieces. 

Main difference between the two setups is the 
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desired inventory level. The first run bases on a 

general inventory limit (mentioned as set-point in 

section 4) of 60 minutes for every workshop of the 

shop floor. The second simulation works with a 

limit of 80 minutes.  

 

The neural control concept affects the workshops 

2, 3 and 4 excluding workshop 1, as the first 

production stage receives its orders directly from 

the order release. The following results exemplarily 

explain the obtained results of workshop 2 for an 

inventory limit of 60 minutes. This is the first 

workshop with a neural control within the material 

flow. Figure-6 depicts the inventory course of 

machine 2 inside the considered workshop. The 

remaining two machines are not depicted. The 

illustration covers an extract of approximately 21 

days. 

At this point, the first 12 hours (grey shaded) 

represent the initial period of the simulation. The 

missing nine days cover the phasing-out period of 

workshop 2. Further, days with a decreasing 

occupancy towards the end of the simulation are left 

out. The length of this period results from the front 

position of the considered workshop within the 

material flow. Both periods do not flow in the 

inventory analysis. The adjusted inventory curve 

shows a typically uneven course with only a few 

variances. The averages mostly correspond to the 

desired values. At this, machine 2 has an average 

inventory of 63 minutes, machine 1 achieves 

approximately 70 minutes and machine 3 is around 

75 minutes. The overall deviation amounts between 

3 and 16 minutes. 

The capacity utilization is, in contrast to the 

satisfactory inventory values, insufficient (Figure-

7). The utilization of the machines in workshop two 

ranges from 27.40% to 28.96%. The average of 

27.66% constitutes the minimal value for the whole 

shop floor. At this point, the results extend to a 

maximum of 41% for workshop 3. Further, the 

curves for all machines belonging to this workshop 

show a noticeable even course with only small 

deviations after the transient phase. 

The insufficient capacity utilization originates 

from two reasons: the distribution of work piece 

types within the job data and the physical structure 

of the shop floor. The work piece types are equally 

distributed over the job data. The even course of the 

utilization after the end of the transient phase is a 

direct consequence. Further, the physical structure 

Figure – 6 Inventory course of machine 2 in workshop 2 

Figure – 7 Capacity utilization of workshop 2 
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determines the number of available processing 

alternatives for a work piece. Workshop 3 contains, 

in contrast to the other workshops, only two 

machines and therefore achieves the highest 

capacity utilization. 

The lead times of the six work piece types 

underline this development. Figure-8 sketches the 

course of all types during the simulation. The 

covered period amounts the whole simulation run. 

The first two and a half day can be seen as the 

initial phase of the whole shop floor. The phasing-

out period is left out. 

At this point, the curves are even after the 

transient phase and end with a value of 

approximately nine hours. Work piece type one (red 

curve) defines the only exception with a generally 

lower lead time of seven hours. This results from 

the varying processing order of this type, which 

leads to a high flexibility for the redistribution 

decisions. 

Overall, when applying an inventory limit of 60 

minutes for the whole shop floor, the simulation 

results render an acceptable approximation of the 

desired limit value. The corresponding capacity 

utilization is qualitatively satisfactory. The courses 

of the machines show an even course with small 

deviations after the transient phase. In contrast, the 

quantitative results are not satisfactory, as the 

maximum utilization is only around 27.66% percent 

for the example workshop and 41% for the whole 

shop floor. 

A repetition of the experiments with an inventory 

limit of 80 minutes leads to quite similar results 

with regard to the inventory limits (Figure-9 shows 

the results, using machine 2 as an example again). 

The average inventory of machine 1 amounts 

approximately 84 minutes. Machines 2 and 3 hold 

an average inventory of 87 and 94 minutes. The 

deviation is on average slightly better than in the 

first run and reaches from 1.8 up to 14.3 minutes. 

The uneven course of the inventories remains 

unchanged. 

The capacity utilization for the example 

workshop during the second run improves from 

27.66% to 43.91% (Figure-10). This improvement 

is remarkable, as the number of machines and the 

used order data stays unchanged. The course of the 

utilization is even, similarly to the first results with 

a smaller inventory limit of 60 minutes. 

Figure – 8 Lead times of all six work piece types 

Figure – 9 Inventory course of workshop 2 with an inventory limit of 80 minutes 
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The increase of the limits reduces the lead times 

for all six work piece types (Figure-11). The 

maximum value during the simulation period is 

around 7 hours. Similar to the first run, work piece 

one shows the lowest lead time due to its variable 

processing order. For this work piece type, the value 

is around five hours. Overall, the reduction ranges 

between two and four hours. 

6. CONCLUSION AND OUTLOOK 

This paper presents an approach for the combined 

control of inventory and capacity utilization within 

a shop floor production. The control concept 

includes the use of artificial neural networks as 

inventory and capacity controllers in a cascaded 

control structure. 

At this, the neural network for inventory control 

is responsible for the redistribution of work pieces 

between different workshops on the shop floor. 

Meanwhile, the neural capacity controller assigns 

single work pieces to available machines belonging 

to the respective workshop. 

The evaluation of this approach by means of a 

generic material flow model shows a good 

performance relating to the compliance of the set 

inventory limit. The capacity results are changeable; 

they have a close coherence to the set inventory 

limits. A limit of 60 minutes for the whole shop 

floor leads to a low capacity utilization, while an 

increase to 80 minutes clearly improves the 

obtained results. 

The close relationship between the inventory 

limit and the achieved utilization of the shop floor 

makes a dynamic and continuous adjustment of the 

set limit interesting for future research. Further, the 

composition of the order data and its effect on 

capacity utilization and inventory development 

should be investigated. 

In the field of neural network research, the 

further development of the neural controllers is 

from major interest. At this, the possible suitability 

of different network architectures and 

configurations should be a central point. As the 

quality and performance of neural networks in 

practical applications is closely related to the 

learning process, the continuous learning of neural 

networks is very important. Therefore, the 

development of new, possibly hybrid network 

architectures should be advanced. 

 

7. ACKNOWLEDGMENTS 

This research is funded by the German Research 

Foundation (DFG) as part of the project 

“Automation of continuous learning and 

Figure – 11 Lead times of all six work piece types for an inventory limit of 80 minutes 

Figure – 10 Capacity utilization of workshop 2 for an inventory limit of 80 minutes 



 

220 

 

examination of the long-run behaviour of artificial 

neural networks for production control”, index 

SCHO 540/16-1. 

 

REFERENCES 

Barata, J. & Camarinha-Matos, L., 2005. 

Methodology for Shop Floor Reengineering Based 

on Multiagents. In L. Camarinha-Matos, ed. IFIP 

International Federation for Information 

Processing - Emerging Solutions for Future 

Manufacturing Systems. Boston: Springer. pp.117-

28. 

Chaturvedi, D.K., 2008. Artificial neural networks 

and supervised learning. In Chaturvedi, D.K. Soft 

Computing: Techniques and its Applications in 

Electrical Engineering. Berlin Heidelberg: 

Springer. pp.23-50. 

Chen, J.C., Wu, J.J. & Chen, C.W., 2008. A study 

of the flexible job shop scheduling problem with 

parallel machines and reentrant process. The 

International Journal of Advanced Manufacturing 

Technology, pp.344-54. 

Chryssolouris, G., Lee, M. & Domroese, M., 1991. 

The Use of Neural Networks in Determining 

Operational Policies for Manufacturing Systems. 

Journal of Manufacturing Systems, pp.166 - 175. 

Dreyfus, G., 2005. 'eural 'etworks Methodology 

and Application. Berlin Heidelberg: Springer 

Verlag. 

Haykin, S., 2008. 'eural 'etworks and Learning 

Machines (3rd Edition). New Jersey, USA: Prentice 

Hall. 

Kohonen, T., 2001. Self-Organizing Maps. 3rd ed. 

New York: Springer. 

Kwan, C. & Lewis, F.L., 2000. Robust 

backstepping control of nonlinear systems using 

neural networks. IEEE Transactions on Systems, 

Man and Cybernetics, Part A: Systems and 

Humans, November. pp.753-66. 

Natarajan, U., Periasamy, V.M. & Saravanan, R., 

2006. Application of particle swarm optimisation in 

artificial neural network for the prediction of tool 

life. The International Journal of Advanced 

Manufacturing Technology, May. pp.1084 - 1088. 

Pfohl, H.C., 2010. Logistiksysteme: 

Betriebswirtschaftliche Grundlagen. Berlin: 

Springer Verlag. 

Rippel, D., Harjes, F. & Scholz-Reiter, B., 2010. 

Modeling a Neural Network Based Control for 

Autonomous Production Systems. In Schill, K. & 

Scholz-Reiter, B., eds. Artificial Intelligence and 

Logistics (AILog) Workshop at the 19th European 

Conference on Artificial Intelligence 2010. 

Amsterdam, 2010. IOS-Press. 

Schäfer, W., Wagner, R., Gausemeier, J. & Eckes, 

R., 2004. An Engineer’s Workstation to Support 

Integrated Development of Flexible Production 

Control Systems. In Integration of Software 

Specification Techniques for Applications in 

Engineering. Berlin Heidelberg, 2004. Springer. 

Scholz-Reiter, B., de Beer, C., Freitag, M. & 

Jagalski, T., 2008. Bio-inspired and pheromone-

based shop-floor control. International Journal of 

Computer Integrated Manufacturing, pp.201-05. 

Scholz-Reiter, B., Harjes, F. & Rippel, D., 2010. An 

Architecture for a Continuous Learning Production 

Control System based on Neural Networks. In Teti, 

R., ed. 7th CIRP Int. Conference on Intelligent 

Computation in Manufacturing Engineering – CIRP 

ICME ‘10. Capri, Italy, 2010. 

Scholz-Reiter, B. & Höhns, H., 2003. Agent-based 

Collaborative Supply Net Management. 

Collaborative Systems for Production Management, 

pp.3-17. 

Scholz-Reiter, B., Toonen, C. & Lappe, D., 2011. 

Job-Shop-Systems – Continuous Modeling and 

Impact of External Dynamics. In Chen, S., 

Mastorakis, N., Rivas.Echeverria, F. & Mladenov, 

V., eds. Recent Researches in Multimedia Systems, 

Signal Processing, Robotics, Control and 

Manufacturing Technology. Proceedings of the 11th 

WSEAS International Conference on Robotics, 

Control and Manufacturing Technology 

(ROCOM'11)., 2011. WSEAS Press. 

Slack, N., Chambers, S. & Johnston, R., 2007. 

Operations Management. 5th ed. FT Prentice Hall. 

Steeb, W.-H., 2008. The 'onlinear Workbook: 

Chaos, Fractals, 'eural 'etworks, Genetic 

Algorithms, Gene Expression Programming, 

Support Vector Machine, Wavelets, Hidden Markov 

Models, Fuzzy Logic with C++, Java and 

SymbolicC++ Programs. 4th ed. Singapore: World 

Scientific Publishing Co. Pte. Ltd. 

Yildirim, M.B., Cakar, T., Doguc, U. & Meza, J.C., 

2006. Machine number, priority rule, and due date 

determination in flexible manufacturing systems 

using artificial neural networks. Computers & 

Industrial Engineering, May. pp.185-94. 
 


