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ABSTRACT 

The traditional production focus in the paper industry has been on maximizing machine utilization 
and minimization of cost but it has had adverse effects on the overall supply chain benchmarks such 
as over capacity, long lead times, excessive inventory and low customer service. A least cost 
production plan for the paper manufacturing and conversion stages results in poor cycle service 
levels where many of the customer orders may fail to meet the due dates. Conversely, a service 
level maximization approach yields a poor solution with respect to production costs. Therefore, 
production planning problem in the paper supply chain is faced with more than one optimization 
criterion which transforms the traditional cost minimization objective into a multiple objective 
optimization problem with consideration for meeting customer requirements for different grades 
and the due dates. In this paper, a multi-objective optimization approach to the successive 
production processes of paper manufacturing and conversion is advocated and applied to obtain a 
range of compromise solutions between the two conflicting objectives of production cost 
minimization and maximization of the cycle service levels. 
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1. INTRODUCTION 

The traditional production focus in the paper 
industry has been on economies of scale for cost 
advantage but it has had adverse effects on the 
overall supply chain benchmarks such as over 
capacity, long lead times, excessive inventory and 
low customer service (Ranta, Ollus & Leppänen 
1992; Hameri & Holmström 1997; Hameri & 
Lehtonen 2001; De Treville, Shapiro & Hameri 
2004). This led to a gradual shift to a more flexible 
production strategy with shorter production cycle 
times and increased number of grade changeovers 
for better customer service. While the capacity 
driven strategy may still be valid for few 
standardized products with high volume, the 
increased product customization in the pulp and 
paper supply chain warrants a focus on meeting 
customer requirements that is only possible through 
a flexible production approach.  

Hameri & Lehtonen (2001) described a transition 
in the production strategy for five Nordic paper 
mills manufacturing paperboard, specialty, and 
standard fine paper. The volume driven strategy 
with emphasis on maximum utilization and low cost 
was replaced by a flexible approach that focused on 
small lot sizes, shorter lead times and punctual 
deliveries. Small lot sizes essentially means a higher 
frequency of grade changeovers which improves the 
customer service but additional costs are incurred 
because of increased number of production setups. 
Different paper grades require a common production 
resource and whenever a production switch to a new 
grade is made, production time is lost in setting up 
the machinery. In the paper industry, setup costs are 
more important as the machine keeps making paper 
but it takes time to adjust to the quality settings of 
the new grade. The paper produced in the transition 
time is rejected. Therefore, apart from the 
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opportunity costs (i.e. lost production time), 
significant material losses are also encountered. 

 Another aspect of sharing resources is that the 
production of different grades cannot happen at the 
same time, therefore, customer orders must be 
sequenced which has repercussions for the cycle 
service levels. Apart from the order sequencing 
issue and its effects on cycle service levels, 
inventory holding costs are also an important 
consideration for planning purposes, Grade 
changeovers can be minimized for particular 
production plan by scheduling each grade only once 
during the planning horizon till the demand is met, 
however, the opportunity costs of capital tied up in 
inventory, the direct costs of storing goods and 
holding items also prohibit large stacks of inventory. 
Furthermore, in some instances, securing additional 
capital may also be a concern and therefore, another 
reason to limit inventory holding costs.  

 

2. FROM SINGLE OBJECTIVE TO MULTI-
OBJECTIVE OPTIMIZATION 

The conventional single objective optimization 
literature identifies the production planning at the 
paper machine as ‘a lot-sizing problem’ which finds 
a  balance between low setup costs (favouring large 
production lots) and low holding costs (favouring a 
lot-for-lot-like production where sequence decisions 
have to be made due to sharing common resources) 
(Rizk & Martel 2001). An aggregated cost function 
representing grade changeover cost, inventory 
holding cost and tardiness penalty is minimized to 
obtain a single best solution. A least cost production 
plan for the paper manufacturing and conversion 
stages results in poor cycle service levels where 
many of the customer orders fail to meet due dates. 
In most real world situations, a decision maker may 
not opt for least cost solution because not all 
customer requirements are met. Conversely, a 
production plan that endeavours to meet all 
customer orders might be too expensive because of 
too many grade changeovers. In such scenarios, a 
single objective optimization approach which either 
minimizes the production cost or maximizes the 
customer service fails to capture the dynamics of the 
decision environment. Instead, the decision maker is 
more likely to be interested in solutions that give a 
range of values in between the two extremes 
obtained by the multi-objective optimization. 
Service level maximization and minimization of 
production cost are conflicting objectives in the pulp 
and paper supply chain. A single optimization 
criterion of either cost minimization or 
maximization of service levels yields a good 
solution from one perspective but is likely to give 
poor results for the corresponding conflicting 

objective.  Therefore, production planning problem 
in the pulp and paper supply chain is faced with 
more than one optimization criterion which 
transforms the traditional cost minimization 
objective into a multiple objective optimization 
problem with consideration for meeting customer 
requirements for different grades and the due dates. 

Whenever an optimization problem is faced with 
multiple and conflicting objectives, the usual 
meaning of the optimum does not suffice in the 
decision making context because a solution 
optimizing all objectives simultaneously generally 
does not exist. The identification of a best solution 
requires a trade-off or compromise between the 
conflicting objectives. The tradeoff between 
conflicting objectives has been most effectively 
captured with the help of a widely known economic 
concept of Pareto optimality or dominance wherein 
solutions are sought from which it is impossible to 
improve one objective without deterioration in 
another objective.  The multi-objective optimization 
approach utilizes the Pareto dominance concept to 
tackle conflicting objectives and is different to the 
conventional single objective optimization approach 
on the following counts:  

• There are at least two distinct objectives instead 
of one. 

• It results in multiple solutions giving a range of 
values between the extreme possibilities for 
each objective.  

• It possesses two different search spaces: 
objective space and decision space. 

• The search process is not influenced by the 
magnitude of the cost coefficients associated 
with each objective.  

The usefulness of a multi-objective optimization 
approach is accentuated in the situations where it is 
hard to estimate the cost coefficients associated with 
the objectives because the search process is 
unaffected by their magnitude. Even if these 
coefficients are estimated, their magnitude 
represents a bias that guides the search process in a 
specific direction. A multi-objective optimization 
approach removes the bias towards a particular 
objective by either normalizing the coefficients of 
the aggregated objective function, using only one 
objective at a time or by incorporating the Pareto 
rank or dominance based approach where all 
objectives are given equal importance during the 
pair-wise comparison for dominance. 

Traditionally, most optimization problems have 
been solved through a single objective approach, 
however, over the years a parallel line of research 
has evolved by taking a new perspective on the 
combinatorial optimization problems hitherto 
treated as single objective problems. For example, 
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vehicle routing, travelling salesman, timetabling, 
machine scheduling, airline crew scheduling 
problems and cutting stock problems have long been 
optimized using single objectives but there is a 
growing realization in the research community that 
most real world problems need to satisfy more than 
one criterion for optimization. Routing problems 
such as travelling salesman and vehicle routing are 
generally optimized by minimizing the total 
travelled distance but Ombuki, Ross & Hanshar 
(2006) identified minimization of the number of 
vehicles used as another objective and argued that 
vehicle routing is intrinsically a multi objective 
optimization problem. Jozefowiez, Semet & Talbi 
(2008) carried out a survey of multi objective 
optimization methods applied to routing problems 
and noted that depending upon the problem context, 
the optimization considerations  included 
minimization of criteria like travelled distance, 
vehicles, vehicle waiting times, merchandize 
deterioration, mean transit time, variance in transit 
time, individual perceived risk, the actual risk, 
individual disutility, unused working hours, the 
length of the longest tour whereas route balancing, 
maximization of capacity utilization and size of the 
population covered was used. Similarly, for time 
tabling problems, Datta, Deb & Fonseca (2007) 
proposed two conflicting minimization objectives of 
average number of weekly free time slots between 
two classes for the students and average number of 
weekly consecutive classes for the teachers. For 
machine scheduling, Li et al. (2010) used 
minimization of make span, completion time and 
tardiness as optimization criteria.  For crew 
scheduling, total cost, delays, and unbalanced 
utilization have been simultaneously minimized 
(Lucic & Teodorovic 2007). Ghoseiri, Szidarovszky 
& Asgharpour (2004) used a dual objective 
scheduling approach for train operations by 
considering lower fuel cost for the railway company 
as one objective while shortening total passenger-
time is the other objective.  

In this paper, a multi-objective optimization 
approach to the successive manufacturing processes 
of lot-sizing and cutting stock problem is advocated 
to obtain a range of compromise solutions between 
the two conflicting objectives of production cost 
minimization and maximizing the cycle service 
levels. In the next section, the production context is 
defined and a bi-objective formulation is developed 
for simultaneously minimizing the production cost 
and maximization of cycle service levels. Solution 
methods are described in section 4 and experimental 
results are discussed in section 5. The discussion on 
results is carried out in section 6. The paper is 
concluded in section 7.  

3. MODEL FORMULATION 

3.1 PROBLEM DEFINITION  

The planning problem is essentially to determine the 
production levels of multiple finished products (FP) 
and intermediate products (IP) over a finite planning 
horizon in a paper mill, where paper production and 
conversion are two successive stages. Large reels of 
paper called Jumbos are produced on paper 
machines which are cut into smaller rolls as per 
customer’s specifications during the conversion 
process. A schematic of the two processes is shown 
in figure 1:  
  
 
 
 
 
  
 

Figure 1: A Schematic of Paper Manufacturing Process 

The customer orders for the finished products 
have the following characteristics: 

• Paper grade 

• Roll’s width 

• Number of rolls required 

• Order due dates which can be a particular day of 
the week long planning horizon. It is assumed 
that in case, the roll requires further finishing 
activities, the quoted due date includes 
necessary time buffer.    

It is assumed that the cutting stage is 
unconstrained because the rate of cutting jumbo 
reels is much faster than the production rate at the 
paper machine. It is a reasonable assumption 
because the paper machine is usually the bottleneck 
resource in the pulp and paper supply chain (Martel 
et al. 2005).The FP demand over the entire planning 
horizon has to be met; however, if an order cannot 
be delivered in time, it incurs a tardiness cost ‘M’. 
Cycle Service Level (CSL) is defined as the 
probability that the cycle time for the customer’s 
order will be less than the quoted lead time (Hopp & 
Spearman 2008). Mathematically 

 
CSL = Probability {Cycle Time < Lead Time} 

   
The demand of intermediate products i.e jumbo 

reels is unknown but derived through the 
independent demand i.e FP demand. No inventory 
of Jumbo reels is kept; however, finished products 
can be stored at the manufacturing facility. 
Changeover costs are incurred whenever a different 
grade of paper is manufactured on a paper machine.  

Conversion Process 

 

Paper Machine 

Raw 
Material 

 
       Rolls 

Jumbo Reel 
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3.2 MATHEMATICAL FORMULATION  

In this section, a two step procedure is used for 
simultaneous minimization of production cost and 
maximization of cycle service levels. The major 
components of paper production cost are trim loss 
and grade changeover cost. While minimization of 
trim loss is the only criterion for the paper 
conversion process, a tradeoff curve between the 
two conflicting aims of grade changeover cost 
minimization and improved cycle service levels is 
obtained by employing a bi-objective formulation in 
the following manner: 

Step 1. The conversion process is solved with a 
single objective of minimization of trim 
loss.  

Step 2. Allocation of cutting patterns to different 
planning periods triggering the production 
of jumbo reels of the respective grades with 
a bi objective optimization criterion namely, 
grade changeover cost minimization and 
service level maximization. Mathematically, 
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The indexes, parameters, sets and decision 

variables used in the above formulation are 
explained in table 1. The planning problem has been 
formulated as a bi-objective minimization problem 
with f1 representing the grade changeover costs (1); 
and service level improvements have been indirectly 
formulated in f2 as minimization of late orders yi’t  
(2). Customer orders for the finished product i’ that 
will not be delivered by the customer specified due 
date are to be minimized along with the grade 
changeover costs incurred on the paper machine 
subject to the capacity constraint (3) and the 

material balancing constraints (4) and (5). While the 
constraint (4) ensures that the end demand of 
finished products is met, constraint (5) stipulates 
that the cut finished products are equal to the 
number of jumbo reels of a particular grade (IP), not 
allowing any inventory of the intermediate products. 
Constraints (6) and (7) ensure integer solution to the 
planning problem. 

Table 1: �otations 

T = Length of the planning Horizon 
t = A single planning period 
i  Intermediate Products (IP) 
i’  Finished Products (FP) 

j  A cutting pattern 
xij = Number of times the jth pattern is used on IP i  to 

generate FP i’ 
di’t = Demand for the FP i’ in period 
Ct = Paper machine’s production capacity (hours) 
kit = Grade changeover time for IP i (hours) 
Kit = Grade changeover cost for IP i (hours) 
ait = Capacity consumption rate of IP i (hours/metric ton) 
Qi’t = Quantity of FP i’ produced during period t 
ρi t = Setup Indicator for IP i in period t 
yi’t = FP quantity i’ that are not delivered within due date 
Qi t = Quantity of IP i produced during period t 
Ii ‘t = Inventory of FP i’ at the end of period t 

 

4. SOLUTION APPROACH 

There have been various ways to applying multi-
objective optimization approaches but the scaler and 
Pareto approaches are the main ones. Due to the 
fundamental difference between the methods 
employed to approximate the Pareto frontier, these 
two approaches may differ substantially with each 
other with regard to suitability for application to a 
specific decision context and the results obtained. 
Therefore, it is deemed prudent to test both solution 
approaches for the production problem of the two 
successive stages of paper manufacturing. Epsilon 
constraint method is selected as the scaler approach 
whereas the non-dominated sorting algorithm-II 
(NSGA-II) is chosen as the preferred Pareto or 
multi-objective evolutionary algorithm (MOEA). 

4.1 EPSILON CONSTRAINT METHOD 
WITH STANDARD GA 

The epsilon constraint method is a multi-objective 
optimization converted to a single objective problem 
and solved through conventional algorithms. 
Different resolution algorithms ranging from exact 
to meta-heuristics, depending upon the problem 
context, have been used in conjunction with epsilon 
constraint method. A steady state genetic algorithm 
is used as the resolution algorithm for the bi-
objective epsilon constraint formulations (Palisade 
2009a). The experimental settings for the GA 
parameters were as follows:  
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A uniform crossover value of 0.5 is used across 
all experiments and auto mutation is used. The latter 
allows the genetic algorithm to increase the 
mutation rate automatically when an organism 
"ages" significantly; that is, it has remained in place 
over an extended number of trials. For many 
models, especially where the optimal mutation rate 
is not known, selecting Auto can give better results 
faster (Palisade 2009b). Experiments with initial 
populations of 50, 200, 500 and 1000 have been 
performed and it was noted that the convergence 
pattern improved with 500 population size but no 
improvements were recorded with a 1000 size 
despite considerable increase in computational 
workload. Therefore, the population size of 500 was 
chosen. Similarly, experiments showed that GAs 
converged before 200 GA equivalent generations or 
100,000 iterations; therefore, it was selected as the 
stopping criterion for all the experiments. 

4.2 NON DOMINATED SORTING 
GENETIC ALGORITHM (NSGA-II)  

Multi Objective Evolutionary Algorithms (MOEA) 
utilize the Pareto based dominance concept in 
finding out a set of non-dominated solutions. Non 
Dominated Sorted Genetic Algorithm (NSGA-II) 
utilizes a non-dominated sorting mechanism to rank 
the entire population of solutions. Srinivas & Deb 
(1994) developed NSGA which was the first 
implementation of a non-dominated sorting 
mechanism. Later on, NSGA-II was introduced to 
improve upon the three known deficiencies of 
NSGA i.e high computational complexity of non-
domination sorting, lack of elitism and the use of a 
user specified sharing parameter for ensuring 
diversity of solutions to inhibit early convergence 
(Deb et al. 2002). 

The non-domination sorting algorithms rank the 
whole population of solutions according to the 
domination count ni i.e number of solutions that 
dominate solution i. The best Pareto front will 
correspond to ni = 0 and it for each of these 
solutions, a set of solutions Si being dominated by i  
is also calculated. Si is used to find out all the other 
non-dominated fronts by increasing the domination 
count by one. The process continues till the whole 
population is ranked.  

NSGA-II was selected as the Pareto based multi 
objective evolutionary algorithm. GANetXL, is a 
software platform that utilizes NSGA-II for multi-
objective optimization, has been used. It is written 
in C++ and exploits a component object model 
(COM) interface to interact with Excel (Savic, Bicik 
& Morley 2011). Its interface with Excel facilitated 
the model development with the help of Visual 
Basic for Application (VBA) macros. 

4.3 TEST DATA 

The paper machine’s speed determining its capacity 
was provided by an Australian manufacturer along 
with the grade changeover times. Trade journals 
were consulted for cost data of different grades of 
paper kraft. Now, only the details of customer 
orders for the finished products were unknown and 
randomly generated data was used to represent these 
unavailable parameters. The random generation of 
test data was inspired by Gau & Wascher (1995) but 
it was modified considerably for the study. The 
details are as follows:  

The customer orders are usually for cut rolls or 
sheets obtained during conversion stage of a paper 
mill and are characterized by paper grades, roll’s 
width or sheet’s dimensions, number of rolls 
required and order’s due date. Cut roll widths ‘li’ 
were randomly generated from a uniform 
distribution so that the simulated widths ‘li’ 
represent all values from 20% to 80% of jumbo 
reels length. In the production environment 
considered, the number of cut rolls required is 
determined by machine capacity because it is the 
bottle neck resource in paper manufacturing supply 
chain. Its capacity is determined by the machine 
speed which in turns determines the quantity of 
customer orders it can handle in one week. Also, the 
randomly generated roll widths affect the required 
number of jumbo reels because of different 
combinations of cutting patterns. These two 
parameters restrict the required quantity; therefore, 
the number of rolls required is spread across all roll 
widths to match the paper machine capacity. The 
order due dates were also randomly generated from 
a uniform distribution of the five working days in a 
week long planning horizon which was considered 
enough to make the point regarding service level 
considerations. 

 

5. RESULTS 

5.1 EPSILON CONSTRAINT METHOD 
WITH STANDARD GA 

In a two step process, the first step involves cutting 
jumbo reels with a minimum trim loss criterion and 
the second step allocates the cutting patterns to 
different planning periods triggering the production 
of jumbo reels of the respective grades with two 
minimization objectives namely grade changeover 
These two vectors determined the extreme values of 
the Pareto frontier and with ten epsilon increments, 
the Pareto frontier was approximated in figure 2. A 
well spread Pareto frontier is obtained between the 
Nadir and Ideal vectors represented in figure 2 by 
the light and dark shaded circles respectively. 
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Figure 2: Approximated Pareto Frontier – Epsilon Constraint Method 

 
The Pareto frontier gives the decision maker a 

range of solutions to choose from. A least cost 
solution of $11,699 for grade change over costs 
results in a cycle service level of 0.838 but as the 
grade changeover cost increased, the service levels 
also improved. This is because the solutions 
resulting in lower grade changeover cost correspond 
to at most one setup in one planning period with the 
possibility of carrying over the setup state to the 
next planning period. For example, the solution 
resulting in grade changeover cost of $11,699 and a 
cycle service level of 0.838 had only 5 setups in the 
week long planning horizon. The number of setups 
in the entire planning horizon gradually increased to 
8, 9, 12, 17, 18, 19, 21and so did the corresponding 
cycle service levels. The maximum cycle service 
level of 0.959 only resulted because of 21 setups in 
one week’s production schedule but also incurred 
much higher costs of $51,045.  

The important consideration here is whether the 
estimated Pareto frontier is global or local, i.e can 
the solutions be improved further?  The answer to 
this question lies in the resolution algorithm. If an 
exact algorithm was used as the solution approach, 
the estimated Pareto frontier would have been 
global and could not have been improved any 
further. Genetic algorithm was used as the solution 
approach and being a stochastic search algorithm, 
the optimality of the obtained solutions can not be 
guaranteed in a single run. Repeated genetic 
algorithm runs enhance the probability of obtaining 

close to optimal solutions (Yuen, Fong & Lam 
2001). However, it would have been 
computationally prohibitive in this case because 
each of the ten solutions obtained would have to be 
re-run a number of times. Nevertheless, determining 
the solution quality is important and another 
measure for the same could be to solve the same 
problem by a multi-objective evolutionary 
algorithm such as NSGA-II and to compare the 
results. 

5.2 NON DOMINATED SORTING GA 
(NSGA-II) 

The state of the art Non Dominated Sorting Genetic 
Algorithm NSGA II was also applied to the same 
problem. The initial population was generated 
randomly. However, it was noted that no individual 
among the initial population was a feasible solution. 
The algorithm was allowed to run for 5000 
generation with a 500 population. After nearly 50 
hours of run time, the algorithm was unable to 
generate a single feasible solution. Different GA 
parameters were tried but the generated solutions 
were always infeasible. The possibility of obtaining 
feasible solutions after 5000 generations cannot be 
ruled out but the computational cost was 
prohibitive. The other alternative is to start with a 
population of feasible solutions; this approach has 
been reported in the literature for similar hard 
combinatorial problems.  
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Figure 3: Approximated Pareto Frontier – Multiple �GSA-II Runs 

 

Datta, Deb & Fonseca (2007) also encountered 
infeasibility of NSGA II generated solutions for a 
highly constrained university timetabling problem 
and when they used feasible solutions as the initial 
population, considerable improvement was 
recorded. Similarly, Fangguo & Huan (2008) 
ensured feasibility of all solutions for their 
dominance based multi-objective genetic algorithm 
by using an initial feasible population. Sathe, 
Schenk & Burkhart (2009) employed a clustering 
algorithm along with NSGA II in order to always 
generate feasible solutions for a multi-constraint bin 
packing problem. Li & Hamzaoui (2009) also used 
initial feasible solutions for their NSGA II 
implementation. Varela et al.(2009) improved the 
heuristic solution obtained for a variant of the 
cutting-stock problem by using it as the initial 
population for their multi-objective genetic 
algorithm. Craig, While & Barone (2009) improved 
the hockey league scheduling with the help of 
multi-objective evolutionary algorithm by using 
previous years schedules as the initial population. 
Reiter & Gutjahr (2010) implemented NSGA-II for 
a bi-objective vehicle routing problem by using a 
separate algorithm to generate feasible solutions to 
be used as an initial population.  

The same approach of injecting feasible 
solutions, including the results obtained by the 
epsilon constraint method, in the randomized 
population was used to solve the problem. However, 
only 30% of the initial population was filled with 
the feasible solutions while the rest of the 

population comprised the randomly generated 
infeasible solutions. This was done to ensure 
diversity among solutions. Different GA parameter 
settings were tested and the algorithm did return 
improved feasible results this time.Details are as 
follow:  

Earlier, in order to generate feasible solutions 
from the initial random population, a population 
size of 500 was used which resulted in high 
computational cost, fifty hours being required for a 
5000 generations run. This was because of the 
computational complexity of NSGA II which is 
exponentially related to the population size i.e 
O(MN2) where M is the number of objectives and 
N is the population size. With feasible solutions as 
the initial population, the computational load can be 
reduced by resorting to smaller populations 
especially because multiple runs are essential to 
ensure that quality solutions are obtained by 
stochastic optimizers such as GA. Initially, a 
population size of 100 was chosen with simple 
crossover probability of 0.95 and a mutation by 
gene probability of 0.05. The adaptive mutation 
probability of 0.01 was also resorted to after 1000 
generations. After a four hour run and 2000 
generations, there were nine improved feasible 
solutions and all the rest were copies. Thus, 2000 
generations was selected as the stopping criterion. 
With the same initial feasible solutions and the 
same proportion of randomized initial infeasible 
solutions, the algorithm was run ten times.
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Figure 4: �SGA II Comparison with the Epsilon Constraint Results 

 

 

All the solutions from the ten runs were combined 
and top hundred were used as the initial population 
to generate the best Pareto front for the problem 
(Figure 3). Typical of a stochastic optimizer, the last 
generation of all the ten NSGA II runs was 
different; therefore, the combination of all solutions 
to obtain the final frontier makes sense. As 
expected, the combined run that includes the best 
100 solutions turns out to be the global Pareto 
frontier of the problem.  

In figure 3, the Pareto frontier obtained by Run 5 
and Run 6 appear to cross the global Pareto frontier 
obtained by the ‘Combined Run’. However, it does 
not happen actually because all the points obtained 
by Run 5 and Run 6 are dominated by the 
‘Combined Run’. It is just that the Run 5 and Run 6 
contain overall fewer solutions and the additional 
solutions of the ‘combined Run’ at the exact 
locations of the overlaps give the false impression 
that the Run 5 and Run 7 are better. 

 

6. DISCUSSION 

The Pareto frontier obtained by the Epsilon 
constraint method which is also the initial Pareto 
frontier is compared with the improvements 
recorded by the NSGA-II solutions in figure 4. All 
the NSGA-II solutions are equally good or better 
than the epsilon constraint results highlighting the 
fact that the Epsilon constraint method did not result 
in a global Pareto frontier which is not surprising 
because the GA experiments corresponding to one 
epsilon value were only performed once. It is 
widely regarded that only repeated GA experiments 
can ensure best possible solutions (Malik, Qiu & 

Taplin 2009). Figure 4 also shows that the NSGA-
II’s Pareto front stayed within the bounds obtained 
by the ideal and nadir objective vectors. The overall 
shape of the Pareto frontier also did not change 
much suggesting that NSGA-II was only able to 
find improved solution in the vicinity of the existing 
feasible solutions. Therefore, it appears that the 
initial Pareto front dictates NSGA-II’s search 
process. 

The ability of the standard genetic algorithm 
when applied as an epsilon constraint method to 
obtain feasible solutions and the inability of NSGA-
II to do the same from an initial random population 
can be explained by the different constraint 
handling mechanisms for the two employed multi-
objective algorithms. The standard GA uses the 
penalty function to handle constraints. The aim is to 
transform a constrained optimization problem into 
an unconstrained one by penalizing the objective 
function by a value based on the constraint 
violation. This is particularly useful for NP-Hard 
combinatorial optimization like the problem under 
study because the feasibility of solutions is 
gradually achieved by minimizing the ‘soft 
penalties’ to zero. On the contrary, NSGA-II’s 
constraint handling mechanism has proved to be 
ineffective if the entire initial population is 
infeasible. However, injecting 30% feasible solution 
as part of the initial solution did improve the results.  

Moreover, the bi-objective optimization of grade 
changeovers and corresponding cycle service levels 
simplifies the lot-sizing decisions. In the 
conventional single objective optimization, one of 
the important considerations for the selection of an 
appropriate lot-sizing model is the maximum 
number of products that can be manufactured in a 
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single planning period. The lot-sizing model that 
corresponds to single product per planning period 
give poor results with regards to the cycle service 
levels but there are cost savings. When multiple 
products are allowed in each planning period, the 
cycle service levels are maximized with increase in 
costs. In bi-objective optimizations, there is no need 
to make a prior decision regarding number of 
products in each planning period. Multiple lot-
sizing models have been integrated in to one 
experiment and the resulting Pareto frontier gives 
the production manager a range of options to choose 
from, depending upon the decision context. 

 

7. CONCLUSION AND DIRECTION FOR 
FUTURE RESEARCH 

In this paper, a multi-objective optimization 
approach is advocated for the successive 
manufacturing processes of the paper industry 
supply chain. A two step solution approach is 
proposed to the bi-objective production planning 
problem. In the first step, a set of non-dominated 
solutions is obtained by employing the epsilon 
constraint method which is used a part of initial 
population for the NSGA-II in the second step. 
NSGA-II not only improves the quality of epsilon 
constraint solutions but also increases the number of 
solution on the Pareto frontier. Issues associated 
with the successful implementation of the multi-
objective optimization algorithms were discussed 
and the importance of estimating the ideal and nadir 
objective vector to reflect the entire set of feasible 
search space was highlighted.   

The relevance of multi-objective optimization 
approach to the real world situation such the 
production planning problem understudy is stressed. 
Ideally, the mill would like to run long production 
runs with minimum grade changeovers and to cut 
the jumbo reels to stock in anticipation of customer 
demand. The same decision context prevailed in 
yesteryears but ever increasing customer 
requirements and marker pressures now warrant a 
trade-off between production cost, flexibility and 
customer service. Typically, in paper industry, 
while some customers enjoy considerable leverage 
on the paper mill and will insist on having their 
orders delivered in time because of their own 
constraints, the paper mill can also afford to delay 
some orders by being flexible with a few of its 
customers for order delivery, therefore, saving on 
production costs. The cost reduction by 
compromising on the service levels can be an 
advantage for both the supplier and customers. For 
the customers insisting on punctual deliveries, the 
bi-objective formulation discussed in this paper 

gives a useful tool to the mill manager because it 
can help to quantify the associated extra cost.  
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