
Proceedings of DET2011

7th International Conference on Digital Enterprise Technology

Athens, Greece

28-30 September 2011

268

VIRTUAL FACTORY MANAGER OF SEMANTIC DATA

Giorgio Ghielmini
ICIMSI-SUPSI

giorgio.ghielmini@supsi.ch

Paolo Pedrazzoli
ICIMSI-SUPSI

paolo.pedrazzoli@supsi.ch

Diego Rovere
ICIMSI-SUPSI

diego.rovere@supsi.ch

Walter Terkaj
ITIA-CNR

walter.terkaj@itia.cnr.it

Claudio R. Boër
ICIMSI-SUPSI

claudio.boer@supsi.ch

Giovanni Dal Maso
Technology Transfer System S.r.l.

dalmaso@ttsnetwork.com

Ferdinando Milella
SimX ltd.

f.milella@simx.co.uk

Marco Sacco
ITIA-CNR

marco.sacco@itia.cnr.it

ABSTRACT

The growing importance of manufacturing SMEs within the European economy, in terms of Gross

Domestic Product and number of jobs, emphasizes the need of proper ICT tools to support their

competitiveness. Major ICT players already offer one-does-all Product Lifecycle Management

suites, supporting several phases of the product-process-plant definition and management. However,

these do also show consistent shortcomings in terms of SME accessibility, degree of personalization

and they often lack of an acceptable level of interoperability. These problems are being addressed

by the development of a Virtual Factory Framework (VFF), within an EU funded project. The

approach is based on four pillars: 1) Semantic Shared Data Model, 2) Virtual Factory Manager

(VFM), 3) Decoupled Software Tools that lay on the shared data model and can interact through the

VFM, 4) Integration of Knowledge. This paper will focus on the Virtual Factory Manager,

proposing an evolution of the former VFF second Pillar (Sacco et al, 2010), that acts as a server

supporting the I/O communications within the framework and its stored knowledge for the

decoupled software tools needing to access its repository.

KEYWORDS

Virtual Factory, Enterprise Modelling, Reference Model, Interoperability, Semantic Data Model

1. INTRODUCTION

Market needs and expectations require a

continuously rapidly evolving production

framework: thus production systems, from small to

large scale and integrated factories, have to be

conceived and set-up in shorter and shorter times

(Chryssolouris et al, 2008). Several critical aspects,

related to this need of rapid prototyping of factories,

have to be addressed: it is critical to provide

sufficient product variety to meet customer

requirements, business needs and technical

advancements (Huang et al, 2005), while

maintaining economies of scale and scope within

the manufacturing processes (Terkaj et al, 2009).

Therefore, the current challenge in manufacturing

engineering consists in the innovative integration of

the product, process and factory worlds and the

related data, aiming at synchronizing their lifecycles

(Tolio et al, 2010).

The creation of a holistic, integrable, up-

gradable, scalable Virtual representation of the

Factory can empower this synchronization,

promoting high cost savings in the implementation

of new manufacturing facilities or reconfiguration

269

of existing ones, thanks to the effective virtual

representation of buildings, resources, process, and

products: this is shown both by industrial practice

and academic scientific research. The entire factory

is simulated as a continuous and consistent digital

model, which can be used, without interruption, all

the way from the product idea to the final

dismantling of the production plants and buildings

(Bracht and Masurat, 2005).

These challenge is being addressed by the

development of a Virtual Factory Framework

(VFF), within an EU funded project

(http://www.vff-project.eu/). The approach is based

on four pillars: 1) Semantic Shared Virtual Factory

Data Model (VFDM), 2) Virtual Factory Manager

(VFM), 3) Decoupled Software Tools, based on the

VFDM and that can interact through the VFM, and

4) Integration of Knowledge. VFF objective is to

fosters an integrated virtual environment that

supports factory processes along all the phases of its

lifecycle.

This paper will focus on the Virtual Factory

Manager (VFM), proposing an evolution of the

former VFF Pillar II (Sacco et al, 2010). This

evolution finds its justification in the identified

weakness of the former second Pillar, found both in

the support to the data consistency check against

modifications performed by different modules and

in the integration of the knowledge layer with the

pure factory data layer. A viable solution has been

identified in the adoption of ontology as means for

data and relationships representation, promoting

knowledge integration in the data-model. This

approach introduces a modification in the overall

VFF architecture, where pillar IV (knowledge

integration) is no longer seen as foundation of Pillar

I (reference data model), as presented in (Sacco et

al, 2010), but rather considered as an additional

decoupled module (Figure 1).

This paper presents the new VFF framework born

from this evolution.

2. VIRTUAL FACTORY FRAMEWORK

As mentioned, an answer to the market

requirements previously highlighted has been

provided by the development of a first version of

the Virtual Factory Manager (Sacco et al, 2011).

That solution proved the validity of the concept of

having an integrated virtual environment supporting

the design and management of all the factory

entities, ranging from the single product to the

network of companies, along all the stages of the

factory lifecycle. The centralized data management

platform based on a common description of the

digital factory demonstrated the capability to

improve the integration process between software

design tools (existing and new developed ones) and

to provide a shared knowledge base to be used

during the factory modelling phases. Nevertheless,

the former approach showed some weaknesses both

in the support to the data consistency check against

modifications to parts of the factory instances

performed by different modules and in the

integration of the knowledge layer with the pure

factory data layer. The result, highlighted by

advanced tests, was a framework affected by some

problems of usability.

The main cause of this situation has been

identified in the impossibility of the previous

implementation of the VFDM, to represent not only

valid data structures, but also their semantics. A

viable solution has been identified in the adoption

of ontology as means for data and relationships

representation in order to improve the integration of

knowledge among the VFF pillars. This approach

introduces some modifications in the whole VFF

picture, affecting the way the components of the

architecture interact. Therefore, the result is a

tighter cooperation between the Knowledge

Manager and the VFDM pillars.

2.1. SEMANTIC VIRTUAL FACTORY
FRAMEWORK ARCHITECTURE

Figure 1 shows the new architecture of the Semantic

Virtual Factory Framework composed by the four

pillars of Semantic Shared Data Model (Pillar I),

Semantic VF Manager (Pillar II), Decoupled VF

Modules (Pillar III) and Knowledge Manager (Pillar

IV).

The Semantic VFDM establishes a coherent

standard extensible set of ontologies for the

common integrated representation of the factory

objects and of the factory knowledge domain,

basing on the tools of the semantic web (mainly the

Web Ontology Language - OWL). Section 3 is

dedicated to a thorough description of the new

Figure 1 - The Semantic Virtual Factory Framework architecture

270

Semantic VFDM approach and of the reasons that

drove the change.

This common ontology set is governed by the

Semantic VFM (Pillar II) that completes the

functionalities of access control, data versioning and

selective data query, already implemented by the

previous VFM, with a full support to the semantic

data validation. In this way, Decoupled Modules

(Pillar III) modifying single parts of the factory data

immediately receive feedback on the consistency of

their actions with the overall definition of the

factory instance. Section 4 and Section 6 are

respectively dedicated to the analysis of the

Semantic VFM and to the description of the current

prototype implementation.

In order to couple with the new features of the

VFM and with the new data exchange formats, it

has been necessary to intervene on the internal

architecture of the Decoupled Modules and, in

particular, of their VF Connector modules. Section

5 reports on the new structure of Pillar III, while an

example of new module interacting with the

Semantic VFM prototype is provided in Section 7.

Also the Knowledge Manager (Pillar IV), that was

the only component of the previous architecture

already based on the usage of ontologies, has been

affected by the new approach. With the new

structure, in fact, it can directly interface the

Semantic VFM as a decoupled module managing a

dedicated part of the Semantic Data Model

ontology. In this way it has been removed another

weak point of VFF that was represented by the need

for adaptation of formats and protocols between

pillars.

3. SHARED SEMANTIC DATA MODEL

The Reference Model (Pillar I) establishes a

coherent standard extensible Virtual Factory Data

Model (VFDM) for the common representation of

factory objects related to production systems,

resources, processes and products. The common

data model can be considered as the shared meta-

language providing a common definition of the data

that will be governed by the VFM (Pillar II) and

used and updated by the Decoupled Functional

Modules (Pillar III).

According to the original requirements, the

VFDM has to be holistic, covering all the relevant

fields related to the Factory domain and exploit

existing technical standards to represent the data.

Moreover the VFDM has to be extensible and

guarantee the proper granularity, providing at the

same time the enablers for data consistency, data

safety, and proprietary data management.

Sacco et al (2011) conceived the VFDM as a set

of XSD files (W3C, 2004c) defining the structure of

the XML files that would be stored and managed by

the VFM. This solution offers relevant advantages

in terms of:

• Syntactic validation of the XML files according

to the defined XSD files.

• Rich expressiveness since several default data

types can be further extended and complex

constraints and properties can be modelled.

• Possibility to integrate several XSD files within a

single project.

However, the XSD technology alone is not suitable

for knowledge representation and several flaws can

be highlighted:

• No explicit characterization of data with their

relations on a semantic level.

• Intra–document references are supported but

inter–document references (cross-references) are

poorly modelled, thus endangering referential

consistency.

• Distributed data can be hardly managed.

• The integration of different knowledge domains

can be cumbersome.

The presented considerations led to evaluate and

finally adopt the Semantic Web technologies which

offer key advantages to the whole VFF because they

enables to:

• Represent a formal semantics.

• Efficiently model and manage distributed data.

• Ease the interoperability of different applications.

• Process data outside the particular environment in

which it was created

• Exploit generic tools that can infer from and

reason about an ontology, thus providing a

generic support that is not customized on the

specific domain.

The new semantic VFDM has been designed as an

ontology (W3C, 2004a) by adopting the OWL

language (W3C, 2004b). In particular, it defines all

the classes, properties and restrictions that can be

used to create the individuals to be stored in the data

repository (Pillar II). Given the wide range and

heterogeneity of the knowledge domains to be

covered by the VFDM in the scope of VFF, it is

necessary to integrate various knowledge domains

as already highlighted by Colledani et al (2008) and

Valente et al (2010) in previous related works.

Therefore, the VFDM has been decomposed into

macro areas (i.e. bricks), creating a hierarchical

structure of sub-ontologies that have been named

Factory, Building, System, Resource, Process,

Product, Strategy, Performance and Management.

This architecture allows decomposing the problem,

downsizing its complexity while keeping a holistic

approach. These sub-ontologies have been

271

developed by referring to the state-of-the-art

technical standards available in the different

domains, and in particular the Industry Foundation

Classes (IFC2x3, 2006), STEP-NC (ISO 14649-

10:2004), and ISA-95 (ISA-95).

4. VIRTUAL FACTORY MANAGER

This section presents the analysis of the

requirements for the VFM (Sect. 4.1) and its

proposed architecture (Sect. 4.2).

4.1 VFM REQUIREMENTS

The main goal of the VFM design and

implementation consists in obtaining an open

integration platform representing a common and

shared communication layer between already

existing and newly developed software tools to

support the factory design and management.

The preliminary architecture of VFM proposed

by Sacco et al (2011) was related to a VF Data

Model based on the XSD/XML format. The

adoption of an ontology-based representation of the

VF Data Model in the VFF project has led to a re-

design of the VFM where Semantic Web

technologies have been exploited. In the new

architecture previous basic requirements have been

extended to include specific semantic

functionalities:

• Platform independent interfacing capabilities.
The VF modules are software tools developed by

different vendors/organizations, with different

programming languages, operating systems and

HW architectures. The VFM has to interface all

of them by providing its service in an open and

“proper” way.

• Management of concurrent access and data
consistency. Several software tools can access

and/or modify partial areas of the factory data at

different, and possibly overlapping, times.

Therefore, the VFM is required to ensure that

concurrent accesses occur without endangering

the data integrity and slowing down the planning

process to unacceptable levels.

• Management of evolving Factory Data. The

VFM has to provide functionalities for managing

the evolution and revision of the data related to

complex entities like production systems,

processes and products. A typical VFDM object

is made by several files, depending on the sub-

ontologies it refers to, as described in section 3.

Hence, a coherent versioning mechanism must

take into consideration the inter-document

references between sub-ontologies.

• Data safety must be ensured in case of hardware

failures or user errors.

• Addition of customized functionalities. Third

party developers need an appropriate mechanism

to enrich the set of functionalities provided by the

VFM without impacting on its core.

• Response time. The interaction between VFM

and the VF modules requires the support of

communication mechanisms that are able to

provide answers in an appropriate time frame.

• A Semantic Web Endpoint which enables

stakeholders to query virtual factory models with

the required level of granularity for a more

efficient and selective data access.

Most of the above underlies the development of

the previous version of VFM. For this reason the

architecture of the new semantic version shares

similar features with its predecessor. However the

ability to support validation and queries of semantic

data introduces novelty aspects in the overall design

of VFM.

4.2 SEMANTIC VFM ARCHITECTURE

The architecture of the semantic VFM was designed

to provide support to the required functionalities.

Each solution implemented by the VFM is based on

stable and well established technologies in order to

obtain an overall system capable to respond to

industrial needs of reliability. The resulting VFM

architecture is shown in Figure 2 as an UML

component diagram.

The functionalities of the VFM are exposed as

web services that have been identified as a suitable

and widely adopted solution to guarantee platform

independent interfacing capabilities. The

Application Server provides the front end for the

exposure of VFM functionalities and takes care for

the information transport of the VFM.

The Information Exchanging Platform (IEP) is

the main component of the VFM and provides VF

modules and plugins with a high level access to the

two functional cores of VFM: the Versioning Layer

and the Semantic Layer. It represents the preferred

way (even if not the only one) to connect to the

VFM, since it provides a complete set of methods

for structured data retrieval and semantic validation,

data locking mechanism and factory version

management.

The Versioning Layer contains the VF Data

Repository where all the shared data are stored. The

evolution of the factory data is managed by the

Versioning System that organizes and updates the

set of virtual factory instances. The Versioning

System guarantees the data safety as well, since it

allows restoring an older version at any time, thus

preventing data losses due to user errors. Moreover,

rollback methods can be used in case of data

inconsistencies due to broken connections or other

272

factors, always ensuring data safety. In particular,

the locking mechanism exposed through the IEP

helps to manage the concurrent access of the VF

modules.

Figure 2 - Semantic VFM Architecture

The Semantic Layer is implemented by

embedding in VFM one of the most common and

reliable Semantic Web Frameworks: Jena (Jena,

2011). Through the IEP users can carry out

semantic validations of VFF models using Jena

functionalities directly on the server. Thanks to

Jena, the IEP can also provide a VFM SPARQL

endpoint. By starting a Query Session on data

extracted from the VF Data Repository it is possible

to perform SPARQL queries (W3C, 2008a).

Through queries each module (or plugin) can select

and aggregate information and be fed with exactly

the data it needs for its business process. Model

modifications can also be executed using the

SPARQL Update language (W3C, 2008a). Modified

models can then be serialised in output files in the

same format used by the VF Data Model ontology

(RDF/XML).

5. DECOUPLED VF MODULES

Currently many software applications, called VF

Decoupled Modules, are under development and

will interface the VFM for accessing the

information kept in the data model.

Since the VFM is the centre of the data exchange

among modules, it has been conceived with

openness in mind to be able to deliver data to the

large variety of tool involved in the factory planning

273

process. The decoupled modules range from

completely new developments to integration of

existing application, to off-the-shelf commercial

software, characterized by different operating

systems and development languages, among them

Windows, Linux and Java, C++, Python.

5.1. REQUIREMENTS ORIGINATED BY THE
VF MANAGER

Since the exposed functionality of the VFM is

implemented as a web service (W3C, 2011), all the

modules are required to implement a web service

client according to the WSDL file (Booth and Liu,

2007) describing the published interface.

Additionally, to address the issue that web services

are intrinsically stateless, the VFM has implemented

a few specific functions to keep track of the state of

its clients. Therefore the decoupled modules need to

actively support this mechanism. Finally, the data

received from the VFM are in RDF/XML format

(Beckett, 2004) and the utilization of third party

libraries for the handling of that format is essential.

5.2. ARCHITECTURE

The listed common requirements lead to a similar

overall module architecture which foresees a few

predefined component.

The following diagram illustrates the generic

architecture of a VF decoupled module with the

mentioned components and a section of the VFM in

the bottom part of the picture.

Figure 3 - Decoupled VF Module Architecture

5.2.1. VF Connector

Since all the decoupled modules will face common

tasks related to the VFM connection, in order to

avoid repeated development efforts among the VFF

partners, a specific VF Connector for the most

common development languages (C++, Java and

Python) has been implemented.

The VF Connectors take care of the web service

client implementation and the connection state

mechanism.

5.2.2. RDF/XML Library

Each decoupled module will manage different parts

of the data model in different ways. Nevertheless

most of the results coming from the VFM are in

form of RDF/XML streams so that the development

effort will be reduced using already existing third

party libraries conceived for RDF/XML data

manipulation. The following table lists some of the

most used open source libraries.

Table 1- RDF/XML Libraries

Library Language Link
Redland RDF

Libraries

C with Python-

Perl- PHP-

Ruby-

Interfaces

http://librdf.org/

RDFLib Python http://www.rdflib.net/

Jena RDF

API

Java http://jena.sourceforge.net/

Protegé API Java http://protege.stanford.edu/

Sesame

OpenRDF

Java http://www.openrdf.org

Semantic data handling obviously is more

complex than the one required for XSD/XML-based

models. Most of the VF Decoupled Modules are not

semantic applications (Motta and Sabou, 2006). As

such they access the VFDM semantic representation

only to extract and modify “plain” data. Indeed this

is one of the few disadvantages of the proposed

semantic approach that can be mitigated only by

fully exploiting the related technology to ensure the

full integration of the four Pillars of VFF.

5.2.3. Business Logic

This part of the software is peculiar to each module

and will be developed on top of the mentioned

components.

Nevertheless it is possible to distinguish two

substantially different functionalities; the ad hoc

developed modules will provide a specific logic and

expose it through a graphical user interface while

the adaptation modules will provide the required

interface for a seamless integration of existing

commercial tools.

274

6. VF MANAGER PROTOTYPE

The Semantic VF Manager has been implemented

on the basis of the previous prototype presented in

Sacco et al (2011). Even if this version is a

complete rewrite of the software, the main inspiring

guidelines that have driven the first prototype

release have not been changed. The choice of

development based on an open source and cross

platform architecture is still valid. This allows the

deployment of the tools in real industrial scenarios

where the VF Manager should be integrated into

existing legacy intranet architectures. Having

chosen to adopt technologies with proven reliability,

cross platform compatibility and well known by IT

personnel grants a smooth integration and

successful operation inside most of the existing

network configuration.

We hereby describe, for each of the main

components of the architecture shown in Figure-2,

the prototypal choices of the applied software tools.

The Application Server was implemented with

Apache HTTP Server, one of the most deployed and

reliable HTTP servers (The Apache Software

Foundation, 2011a). The Servlet Container was

developed with Apache Tomcat (The Apache

Software Foundation, 2011b), used in numerous

large-scale, mission-critical web applications across

a wide range of industries and organizations.

Tomcat is paired with “Tomcat mod” to support

integration with Apache HTTP server: this

connector redirects the information received by the

Apache Server to Tomcat, and therefore to the plug-

ins. The Versioning Layer was developed by

adopting Subversion (Collins-Sussman et al, 2004)

that is an open source version control system widely

used in the open source world. Access to the

ontology model, i.e. creating, writing and reading

models from OWL, has been implemented on top of

the Jena framework (Jena, 2011) which is a proven

library that implements Web Semantic in Java.

FRONT END

MANAGERS

UTILITIES

IEP

Web Service

Administration

Web Pages

Users

Web Pages

Jena Subversion Transaction Users

Projects
Working

Copies

Ontology

Models
Logging

Figure 4 - Architecture of the VF Manager Prototype

The architecture of the VF Manager in Figure-4

highlights the internal division in tree main layers:

front end, managers and utilities.

The front end layer consists of three components

that expose the functionalities:

• IEP provides a SOAP Web Service to the VF

modules.

• Administration lets the administrative personnel

manage the user and the opened sessions using a

web-based interface.

• Users Pages are web pages that a user can access

to see his open session and to chat with other

active users.

The managers layer groups most of the business

logic of the VF Manager and is composed of the

following components:

• Jena handles the ontology model using the Jena

framework;

• Subversion is responsible for data storage and

versioning using the SVNKit library (SVNKit,

2011);

• Transaction manages user sessions and commits,

coordinating the Jena, Subversion and Users

components;

• Users manages the user database, access control

and sessions lists.

The utilities layer consists of components

providing a common infrastructure to handle:

• Projects

• Working copies

• Ontology models

• Logging

All this components have been developed in Java

and JSP (Java Server Pages) and deployed as

Tomcat web application.

This prototype is an evolution of the software

presented in Sacco et al (2011) and focuses on the

implementation of a wider set of features:

• Data versioning

• SPARQL Query

• Locking

• Granularity

• Dependencies

• Web access

The previous prototype focused only on

versioning and locking. A key feature introduced in

this version is granularity, implemented with the

concept of projects to represents the minimal

independent unit (i.e. set of files) that can be locked.

A project can have one or more dependency on

other projects, allowing reusing of shared resources.

A project can not only declare its dependencies –

allowing a module to manually retrieve them - but

can also automatically include them to build a

275

complete ontology model. This model can be

queried using SPARQL language (W3C, 2008a).

Finally in this prototype we have implemented the

ability to access the VF Manager using an Internet

browser: administrators and registered user can

access some functionalities of the VF Manager

without needing to use a module application.

Further development of the prototype is targeted

at consolidating the robustness of the implemented

features and at improving the functionalities that

can be accessed from the web interface. This last

development will eventually enable a user to access

the data in the VF Manager without relying to any

module, maybe allowing limited editing

capabilities. Another important features that will be

enabled by the web interface is the access from

mobile devices, such as smart phones and tablets.

7. FLP – A DECOUPLED VF MODULE

In order to illustrate the interaction of decoupled

modules with the VFM one among the several tools

developed for the VFF project has been chosen, the

Factory Layout Planner (FLP) (Ceruti et al, 2010).

The FLP, together with other two applications

(GIOVE Virtual Factory by ITIA-CNR and Visual

Components with SimX adaptation module), was

already involved in the feasibility demonstration of

the former VFM (Sacco et al, 2011).

7.1. FUNCTIONALITY

FLP is a client/server application that enables the

collaborative development of a factory layout.

The main functionality of the FLP consists in:

• 3D visual editing of the layout

• 3D visual editing of the building

• running Discrete Events Simulation (DES)

Figure 5 - FLP Main Window

The application is characterized by a two-level

architecture with a fat client dealing with complex

3D models and real time requirements, and a server

which acts as a synchronization manager and as

VFM web client.

7.2. IMPLEMENTATION

FLP is an application written in Java. For handling

the data received from the VFM in RDF/XML

format, the third party library Jena (Jena, 2011) is

used.

7.3. ACCESSED DATA

FLP will interact with different areas of the VFDM

to exploit its functionality:

• the multisite information - the production plants

of the enterprise [read-write]

• the building data [read-write]

• the resources templates - for every resource

template (or type) a set of information (icon,

VRLM file(s) for 3D representation, properties

and further data) [read-only]

• the layout data (which contains for example the

instantiated resources, their position and their

property values) [read-write]

• the production plans and processes data to feed

the DES engine [read-only]

• the results of the DES simulation [read-write]

7.4. SAMPLE USE CASES

The prototype of the VFM hosts a partial Data

Model and enables the FLP to access data related to

the layout of a factory, both resource types and

instantiated resources. The FLP use cases treated

here are related to those data.

7.4.1. Caching resources types (read only)

The FLP composes a layout by creating and placing

into the 3D window instances of resources from the

resources catalogue. The FLP itself does not modify

the resource templates, which consists of resource

type description data and typically very large 3D

model files (those data are not subject to frequent

changes). Given those assumptions, for performance

purposes, the FLP maintains a local cache of the

data by checking from time to time if a

synchronization of the local cache is required.

The steps to accomplish this task consist in

• select the current revision of the sub-project

“Resource Library”

• download the ontology file(s) containing the

individuals

• load the file(s) into a Jena ontology model in

order to access the content

• retrieve all the 3D files from the “resource

catalogue” folder and store them locally

7.4.2. Layout planning (read-write)

The FLP user selects the current version of a layout

with the purpose of modifying it. It must signal to

the VFM its intention, so that other users do not

276

modify the same data and the Data Model remains

consistent. Precondition for this use case is that the

local catalogue of resources has been successfully

synchronized for the selected project.

The additional steps (compared with use case

7.4.1.) required to accomplish this task consist in:

• start a transaction on the selected project

• display all the instances of resources defined in

the project in a editable 3D view of the layout

• apply the modifications to the Jena ontology

model and modify the local project file(s)

• send back the modified files to the VFM

• make the changes permanent and available to all

others VFF users by committing the open

transaction

8. CONCLUSIONS

The new approach driven by the Semantic VFDM

and enabled by the Semantic VFM represents a step

forward in the improvement of the Virtual Factory

Framework and in particular towards the target of a

fully integrated architecture of all the Pillars. Data

individuals and their Semantics come now from the

same coherent source and can be seen by different

perspectives, according to the needs of the

accessing clients (Knowledge Manager or

Decoupled Modules).

A first prototype of the Semantic VFM exploring

the potentials and the issues related to this new

approach has been presented. In particular, the

applied Semantic Web technologies represent the

cornerstone to obtain a framework where the

different stakeholders can effectively contribute in a

harmonized way to the definition of the virtual

factory along all the phases of its lifecycle.

In the coming months improved versions of the

VFM will implement the defined architecture and

fulfil the expected functionality. An increasing

number of Decoupled Modules will interface the

VFM and fill in the VF Data Repository with

individuals according to the developed Virtual

Factory Data Model, thus validating the new

approach.

9. ACKNOWLEDGMENTS

The research reported in this paper has received

funding from the European Union Seventh

Framework Programme (FP7/2007-2013) under

grant agreement No: NMP2 2010-228595, Virtual

Factory Framework (VFF).

REFERENCES

Beckett, D., “RDF/XML Syntax Specification

(Revised)”, W3C, 2004, Retrieved: 15.06.2011,

<http://www.w3.org/TR/rdf-syntax-grammar/>

Booth, D. and Liu, C.K., “Web Services Description

Language (WSDL) Version 2.0 Part 0: Primer”, W3C,

2007, Retrieved: 15.06.2011,

<http://www.w3.org/TR/wsdl20-primer/>

Bracht, U., Masurat, T., "The digital factory between

vision and reality", Computers in Industry, Volume

56, Issue 4, 2005, pp. 325–333

Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, A.,

Wilkinson, K. and Reynolds, D., “Jena: Implementing

the Semantic Web Recommendations”, Proceedings of

the 13th international World Wide Web conference,

2003, pp 74-83

Ceruti, I.F., Dal Maso, G., Ghielmini, G., Pedrazzoli, P.

and Rovere, D., “Factory Layout Planner”, ICE - 16th

International Conference on Concurrent Enterprising,

2010, Lugano, Switzerland

Chryssolouris, G., Mavrikios, D., Papakostas, N.,

Mourtzis, D., Michalos, G., Georgoulias, K., "Digital

manufacturing: history, perspectives, and outlook",

Proceedings of the Institution of Mechanical

Engineers Part B: Journal of Engineering

Manufacture, Volume 223, No. 5, 2008, pp.451-462

Colledani, M., Terkaj, W., Tolio, T. and Tomasella, M.

“Development of a Conceptual Reference Framework

to manage manufacturing knowledge related to

Products, Processes and Production Systems”, In:

Bernard A, Tichkiewitch S (eds), “Methods and Tools

for Effective Knowledge Life-Cycle-Management”,

Springer, 2008, pp 259-284.

Collins-Sussman, B., Fitzpatrick, B.W. and Pilato, C.M.,

“Version Control with Subversion”, 1st Edition,

O'Reilly Media, Sebastopol, CA, 2004, p 320

Colombetti, M., “Ingegneria della conoscenza: modelli

semantici”, 2010-11 Edition, Facoltà di ingegneria

dell’informazione, Politecnico di Milano, Italy, 2011,

p 42

Huang, G.Q., Simpson, T.W. Pine II, B.J., “The power of

product platforms in mass customization”,

International Journal of Mass Customisation, Vol. 1,

No. 1, 2005, pp 1-13

ISA-95, “ISA-95: the international standard for the

integration of enterprise and control systems”, ISA-

95.com, Retrieved: 15.06.2011, <http://www.isa-

95.com/>

Jena, “Jena – A Semantic Web Framework for Java”,

SourceForge.com, 2011, Retrieved: 15.06.2011,

<http://www.openjena.org/>

IFC2x3, “IFC2x3 Release”, buildingSmart, 2006,

Retrieved: 15.06.2011, <http://buildingsmart-

tech.org/specifications/ifc-releases/ifc2x3-release>

Mc Bride, B., “An Introduction to RDF and the Jena

RDF API”, 2010, Retrieved: 15.06.2011,

<http://jena.sourceforge.net/tutorial/RDF_API/>

Mc Carthy, P., “Search RDF data with SPARQL”, IBM,

developerWorks, 2005, Retrieved: 15.06.2011,

<http://www.ibm.com/developerworks/xml/library/j-

sparql/>

277

Motta, E. and Sabou, M., “Next Generation Semantic

Web Applications”, 1st Asian Semantic Web

Conference (ASWC), 2006, Beijing, China

Sacco, M., Dal Maso, G., Milella, F., Pedrazzoli, P.,

Rovere, D. and Terkaj, W., “Virtual Factory

Manager”, HCI International, 2011, Orlando, USA

Sacco, M., Pedrazzoli, and Terkaj, W., “VFF: Virtual

Factory Framework”, ICE - 16th International

Conference on Concurrent Enterprising, 2010,

Lugano, Switzerland

SVNKit, “[Sub]Versioning for Java”, TMate Software,

2011, Retrieved: 15.06.2011, < http://svnkit.com/>

The Apache Software Foundation, “Apache HTTP Server

Project”, The Apache Software Foundation, 2011,

Retrieved: 15.06.2011, <http://httpd.apache.org/>

The Apache Software Foundation, “Apache Tomcat 6.0”,

The Apache Software Foundation, 2011, Retrieved:

15.06.2011, <http://tomcat.apache.org/tomcat-6.0-

doc/index.html>

Terkaj, W., Tolio, T., Valente, A., “Designing

Manufacturing Flexibility in Dynamic Production

Contexts”, In: Tolio, T. (ed) Design of Flexible

Production Systems. Springer, 2009, pp 1-18

Tolio, T., Ceglarek, D., ElMaraghy, H.A., Fischer, A.,

Hu, S., Laperrière, L., Newman, S., Váncza, J.,

“SPECIES -- Co-evolution of Products, Processes and

Production Systems”, Cirp Annals-Manufacturing

Technology 59 (2), 2010, pp 672-693

Valente, A., Carpanzano, E., Nassehi, A. and Newman,

S. T., “A STEP compliant knowledge based schema to

support shop-floor adaptive automation in dynamic

manufacturing environments”, Cirp Annals-

Manufacturing Technology 59 (1), 2010, pp 441-444

W3C, “OWL Web Ontology Language - Use Cases and

Requirements”, W3C, 2004a, Retrieved: 15.06.2011,

<http://www.w3.org/TR/webont-req/#onto-def>

W3C, “OWL Web Ontology Language - Reference”,

W3C, 2004b, Retrieved: 15.06.2011,

<http://www.w3.org/TR/owl-ref/>

W3C, “SPARQL Query Language for RDF”, W3C,

2008a, Retrieved: 15.06.2011,

<http://www.w3.org/TR/rdf-sparql-query/>

W3C, “SPARQL Update”, W3C, 2008b, Retrieved:

15.06.2011,

<http://www.w3.org/Submission/SPARQL-Update/ >

W3C, “Web Services Activity”, W3C, 2011, Retrieved:

15.06.2011, <http://www.w3.org/2002/ws/>

W3C, “XML Schema Part 1: Structures Second Edition”,

W3C, 2004c, Retrieved: 15.06.2011,

<http://www.w3.org/TR/xmlschema-1/>

 “ISO 14649-10:2004 Industrial automation systems and

integration -- Physical device control -- Data model

for computerized numerical controllers -- Part 10:

General process data”

