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ABSTRACT 

In the modern interconnected environment, manufacturing systems, in their pursuit of cost, time and 

flexibility optimization, are becoming more and more complex, exhibiting a dynamic and non linear 

behaviour.  Unpredictability is a distinct characteristic of such a behaviour and affects production 

planning significantly.  This paper presents a novel approach for the assessment of unpredictability 

in the manufacturing domain.  In particular, the fluctuation of critical manufacturing performance 

indicators is studied with the help of the Lempel-Ziv Kolmogorov complexity measure in order for 

the complexity of a manufacturing system to be evaluated.  Finally, the method’s potentiality is 

examined with the application of the proposed approach to an automotive industrial use case. 
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1. INTRODUCTION  

In the globalized and interconnected market, 

demand fluctuation along with the requirements of 

high product quality, low cost, short lead time and 

high customization lead to a manufacturing 

complexity increase (Chryssolouris, 2006).  

Unpredictability, a typical characteristic of a 

complex system, may have a negative impact on a 

production system’s design, planning and operation, 

in a quite significant manner.  Determining  the 

complexity quantitative metrics is considered as a 

prerequisite for understanding complexity 

mechanics and managing efficiently complexity 

(Hon, 2005, Wiendhal and Scheffczyk, 1999).  The 

scope of the current study is the examination 

complexity in manufacturing systems, by assessing 

the unpredictability of performance indicators with 

the use of the Lempel Ziv complexity measure. 

The rest of the paper is organized as follows.  

Chapter 2, presents a review of the existing 

literature on manufacturing modelling approaches.  

Chapter 3, describes the proposed methodology for 

the assessment of unpredictability, by introducing 

the application of the Lempel Ziv complexity 

measure to manufacturing performance indicators 

timeseries analysis.  A case study from the 

automotive industry that illustrates the efficacy of 

the approach to real industrial environments is 

provided in chapter 4.  In the case study, the 

complexity assessment of an assembly line and the 

relationships among flexibility, production mix and 

unpredictability are studied.  Chapter 5, concludes 

the basic outcomes from this work and proposes 

future research direction. 

2. LITERATURE REVIEW  

Over the past years, several approaches, utilizing
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Figure 1 – Classification diagram of the main manufacturing complexity analysis methods 

 

different methods and tools, have been proposed for 

modelling and measuring the manufacturing 

complexity.  Most of the approaches can be 

classified into five main categories, based on the 

tools used for the complexity analysis.  The first 

category of methods follows the information theory 

approaches, having as fundamental measure this of 

Shannon’s entropy.  The second category is related 

to timeseries analysis techniques, such as the 

Fourier analysis and non-linear dynamics tools.  In 

the third category, several approaches study 

complexity having as a basis the axiomatic theory.  

The fourth category includes methods that attempt 

to address complexity by defining a coding system 

for machines and products.  The last category 

concerns methods inspired by ideas from fluid 

dynamics and aim to introduce a Reynolds number 

namely the metric to manufacturing in order for the 

complexity to be assessed by defining a threshold 

between a steady and a turbulent manufacturing 

behaviour.  The diagram of Figure 1, schematically 

illustrates the classification of the aforementioned 

categories and their subcategories. 

Entropy, as it is introduced in the information 

theory (Shannon and Weaver, 1949) is associated 

with the uncertainty of the occurrence of a series of 

events.  In the manufacturing domain, the 

information entropy approach is utilized in order for 

the complexity of a production system to be 

assessed, and it is regarded as the sum of individual 

entropy rates for each process and product variant.  

Following this approach, in (Deshmukh et al, 1998), 

a theoretical framework is proposed for assessing 

the static complexity of manufacturing systems.  

Static complexity is associated with the different 

types of resources and different types of parts in the 

system and it can be regarded as the measure of 

information, required to describe the system and its 

components.  Similarly, in (Hu et al, 2008) the 

effect of product variability and assembly process 

information on the manufacturing system 

complexity, is studied with the help of entropy 

based metrics.  Entropy metrics are also used in 

(Frizelle and Woodcock, 2008) for studying input-

output systems, in particular on focusing on queues’ 

measurements.  The mixed model assembly lines 

complexity is analysed in (Zhu et al, 2008), where 

the entropy of each station is computed as the 

entropy, caused by the introduced variants and the 

entropy induced by preceding stations.  Based on 

(Zhu et al, 2008) the complexity metric, the 

complexity effect on the throughput of different 

assembly system configurations is studied in (Wang, 

2010). 

In (Suh, 2005), complexity is considered as “the 

measure of uncertainty in satisfying the aims 

(functional requirements) of a system” and it is 

classified into the following types: real and 

imaginary, time dependent and time independent, 

periodic and combinatory. A series of axioms, 

concerning complexity are defined, and within the 

resulting framework relations, between design 

parameters and functional requirements, are 

established in a matrix form. In terms of 

manufacturing, the objective is the maximization of 

productivity by reducing the complexity of the 

manufacturing system, following a process called 

“Design-Centric Complexity (DCC) theory”. 

According to (Lu and Suh, 2009) the introduction of 

functional periodicity, by reinitializing the system’s 

function on a periodic basis, is suggested in order 

for the continuous drifting of system ranges to be 

disrupted. 

In a timeseries analysis, chaos and non-linear 

dynamics techniques are used for the assessment of 

complexity in manufacturing systems. Phase 

portraits and time delay plots are utilized in order to 

examine the scheduling of a simple manufacturing 
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Figure 2 – Proposed Manufacturing Complexity Assessment Methodology based on LZ complexity analysis 

 

system (Giannelos et al, 2007).  Based on this 

analysis, a new dispatching rule is proposed 

presenting promising results in terms of time 

performance characteristics.  Time delay plots i.e. 

the Poincare maps are also used in (Peters, 2003) for 

studying the effect of buffer size on the performance 

of a manufacturing system.  The adaptability to 

demand of a steel construction industry, under 

different operational policies and parameters, is 

studied, utilizing the maximal Lyapunov exponents 

and bifurcation diagrams (Papakostas and Mourtzis, 

2007).  Similarly, the maximal Lyapunov exponents 

are also utilized in (Alfaro and Sepulveda, 2005) 

along with the Fourier analysis and fractal 

dimensions for examining the chaotic behaviour of a 

production system, based on buffer index timeseries.  

In (Papakostas et al, 2009), a simulation based 

method, along with a regression analysis and a non-

linear dynamics analysis is proposed. The aim of the 

present methodology is the determination of a 

manufacturing system’s sensitivity to workload 

changes, the measurement and the control of the 

system’s complexity.  In another work, a sensitivity 

analysis is performed in order to identify the 

system’s chaotic behaviour, by introducing small 

perturbations in the initial conditions (Schmitz et al, 

2002). 

A coding system for classifying information of 

major components of industrial systems is proposed.  

In the context of this coding framework, complexity 

is defined as a function of the quantity and the 

uniqueness of information (ElMaraghy et al, 2005 

and ElMaraghy and Urbanic, 2003). 

In (Efthymiou et al, 2010) the introduction of the 

Reynolds number concept to a manufacturing 

system as an indicator of complexity is proposed.  

The aim of this, is the identification of the transition 

regime between the behaviour of steady and 

turbulent manufacturing operations in analogy to 

laminar and turbulent flows.  Similar concepts, 

coming from the fluid dynamics domain are also 

proposed in (Schleifenbaum et al, 2010) for 

production systems and in (Romano, 2009) for 

supply chain. 

Although the existing approaches of the 

manufacturing complexity analysis may lead to 

useful results, they do not provide a direct 

assessment of unpredictability of the manufacturing 

performance indicators that are significant 

parameters for decision making during the design, 

planning and operation of manufacturing systems 

(Chryssolouris, 2006).  Additionally, a series of 

difficulties arise in applying the existing approaches 

to real industrial problems.  These obstacles are 

mentioned within the paragraph hereafter. 

Entropy based approaches require the definition 

of the different states of a system’s components.  In 

addition, a series of assumptions related to the 

independence of the system’s states should be made.  

Finally, there is the problem of inserting subjectivity 

into the analytical association of the entropy 

measures with the system’s performance 

(Papakostas et al, 2009).  The complexity 

approaches, based on a coding system, insert the 

subjective definition of the codes that subsequently 

lead to a subjective assessment of complexity.  

Moreover, in case that a code of a component or a 

part is missing, the complexity assessment is not 

feasible.  The axiomatic theory methods demand the 

knowledge of uncertainty for a system’s specific 

requirement. This uncertainty is connected with the 

estimation of a probability that should  be known or 

assumed.  The chaos and non-linear dynamics 

theory tools are useful only when the system under 

study is chaotic.  The phase portraits and the 

bifurcation diagrams provide a schematic way of 

presenting a system’s irregularity but they do not 

provide a specific value that can be easily compared 

with the values of other systems.  Finally, the 

approaches inspired by fluid dynamics are still in an 

early stage of development 

3. MANUFACTURING COMPLEXITY 
ASSESSMENT METHODOLOGY 

In the present method, complexity is approached as 

the unpredictability of manufacturing performance 

indicators.  The assessment of the unpredictability is 

performed by applying the Lempel-Ziv complexity 

analysis to manufacturing performance indicators 

timeseries. 
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Figure 3 – Case Study inputs and outputs of the discrete event simulation model 

 

In (Lempel and Ziv, 1976), a complexity measure 

(LZ) based on symbolic dynamics and on 

Kolmogorov’s work (Kolmogorov, 1978) is 

introduced.  LZ is a nonparametric measure for 

finite sequences, related to the number of distinct 

substrings and the rate of their occurrence along the 

sequence that assesses the degree of disorder or 

irregularity of a sequence.  The LZ values close to 

zero indicate a system presenting the least complex 

behaviour, while systems with LZ values near one 

are related with stochastic, unpredictable behaviour 

(Ferreira et al, 2003).  The LZ presents several 

advantages in comparison with the timeseries 

complexity techniques.  First, the LZ can be applied 

both to deterministic and to stochastic (and chaotic) 

systems.  Second, the stationarity of the timeseries 

under investigation is not required for the 

application of LZ.  Third, the LZ provides a 

universal measure of complexity, facilitating the 

comparison of different manufacturing systems. 

The proposed methodology consists of three main 

steps, namely, the simulation of the manufacturing 

system, the LZ analysis of performance indicators 

timeseries and the estimation of the mean value of 

LZ measures.  In the first step, the simulation model 

of the manufacturing system under study is 

developed.  The system is examined under a range 

or ρ varying from 0.1 up to 1.  The idea is to study 

the system under a wide range of order’s pressure 

from low demand rates up to high.  So, a series of 

simulations are performed as many as the range or 

ρ.  The output of this step is the performance 

indicators timeseries.  Each performance indicator 

corresponds to a ρ.  In the next step, the timeseries 

are analyzed with the use of Lempel Ziv and a 

complexity measurement for each timeseries that 

occurs.  In the last step, the mean value of the LZ 

measure of performance indicator timeseries for the 

range of ρ from 0.1 up to 1 is estimated.  The mean 

value is considered as weighted indicator of the 

manufacturing system’s unpredictability and it is 

left  as LZ .  The flowchart of the proposed 

methodology is presented in Figure 2. 

3.1. UNPREDICTABILITY ASSESSMENT 
WITH LEMPEL-ZIV KOLMOGOROV 
COMPLEXITY 

The LZ analysis of a performance indicators’ 

timeseries, which is denoted {Ii}, iεΖ
+
 consists of 

two phases: a. the timeseries preparation, and b. the 

computation of complexity.  The first phase 

includes: a. the transformation of the performance 

indicators’ timeseries into a sequence of 0 & 1 and 

b. the definition of two subsequences of the 

produced sequence.  The {Ii} timeseries is 

transformed to a sequence S including 0 and 1.  The 

S sequence is written as s(i), iεΖ
+
 according to the 

rule: 
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, where I
*
 is the mean value of the timeseries. 

The definition of two subsequences follows, so 

let, 

• P and Q be two subsequences of S, 

• PQ be the concatenation of P and Q, 

• PQπ be a sequence derived from PQ after 

the last character is deleted, 

• v(PQπ) denote the vocabulary of all 

different subsequences of PQπ 
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Table 1: mean values of the Lempel Ziv Kolmogorov complexity  

Product Mix  

(A%, B%, C%) 

System 

type 

Mean LZ 

measure, LZ   

Total  

 

Underbody 

A 

Underbody 

B 

Underbody 

C 

Product Mix A 

(20%, 30%, 50%) 

Assembly 

Line A 

Flowtime 0,48 0,44 0,50 0,49 

Tardiness 0,11 0,11 0,08 0,05 

Assembly 

Line B 

Flowtime 0,45 0,42 0,48 0,46 

Tardiness 0,10 0,09 0,07 0,04 

Product Mix B 

(33%, 33%, 33%) 

Assembly 

Line A 

Flowtime 0,45 0,39 0,48 0,51 

Tardiness 0,07 0,07 0,06 0,07 

Assembly 

Line B 

Flowtime 0,43 0,37 0,45 0,49 

Tardiness 0,06 0,07 0,06 0,06 

Product Mix C 

(10%, 80%, 10%) 

Assembly 

Line A 

Flowtime 0,20 0,07 0,43 0,35 

Tardiness 0,19 0,18 0,03 0,17 

Assembly 

Line B 

Flowtime 0,19 0,06 0,44 0,34 

Tardiness 0,17 0,17 0,03 0,16 

 

 

In general, the P and Q subsequences can be 

denoted as, 

 

)(...,),2(),1( rsssP =   (2) 

)1( += rsQ   (3) 

)(),...,2(),1( rsssPQ =π   (4) 

 

where, rε[1,n] 

 

The second phase is the computation of the 

complexity.  Sequence S is scanned from left to 

right and a complexity counter c(n) is increased by 

one unit every time a new subsequence of 

consecutive characters is encountered.  The steps 

followed are described hereafter. 

1. At the beginning of the computation c(n)=1, 

P=s(1), Q=s(2), PQ=s(1), s(2) and PQπ=s(1).  In 

general 

)(...,),2(),1( rsssP =   (5) 

)1( += rsQ   (6) 

)(),...,2(),1( rsssPQ =π   (7) 

 

If Q belongs to v(PQπ), then Q is a subsequence 

of PQπ. 

2. Renew Q to be s(r+1), s(r+2) and check if Q 

belongs to v(PQπ). 

3. Repeat the steps 1 & 2 until Q does not belong to 

v(PQπ) and increase c(n) by 1. 

4. Renew P to be the sequence P=s(1),…, s(r+i) 

with Q=s(r+i-1). 

5. Repeat the steps 1, 2, 3 & 4 until Q is the last 

character, i.e. up to the point that r equals n. The 

complexity counter c(n) at this point defines the 

number of different subsequences in P. 

In order for the LZ measure to be made 

independent of the sequence length, the c(n) is 

normalized with respect to the complexity of a 

random binary sequence, 

nnnb 2log/)( =   (8) 

 

Thus, the normalized LZ used within the current 

study is given by: 

nnc
n

nCmeasureLZ 2log)(
1

)(: =   (9) 

The mean value of the LZ measure of a performance 

indicator timeseries for a set of ρ is given by: 

∑
=

=
w

iCF
w

IndicatorePerformancLZ
1

1
)(

ρ

ρ (10) 

, where w is the number of the examined ρ 

4 INDUSTRIAL USE CASE 

The efficacy of the proposed approach is presented 

with the help of an industrial use case from the 

automotive sector.  Two identical assembly lines 

(AL) consisting of 17 consecutive stations are 

simulated with the discrete event simulation SW 

Witness 2007.  Each line produces three different 

types of car floors, namely underbody A, B and C.  

The only difference between the two assembly lines 

is that the setup times of the second assembly line 

are the double of the first assembly line setup times.  

Thus, the first assembly line is considered being 

more flexible than the second one. 

The output of the assembly lines’ discrete event 

simulation models is the performance indicators’ 

timeseries.  Two types of performance indicators are 

provided by the simulation and are further analysed  
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Figure 4 – Mean LZ complexity measures of flowtime analysis 

 

with LZ, namely, flowtime and tardiness and are 

given by the following equations. 

 

nn

i

n ATETF −=   (11) 

 

, where Fn, ETn and ATn, represent the flowtime, the 

completion (end) time and the arrival date of job n 

at time step i, respectively. 

),0max( nn

i

n ETDDT −=   (12) 

 

, where Tn and DDn represent the tardiness and the 

due date of job n at time step i, respectively.  

Flowtime and tardiness timeseries are further 

divided into three timeseries for underbody A, B 

and C.  In particular, the notations are: 

• F
A
/T

A
: flowtime/tardiness timeseries of 

underbody a 

• F
B
/T

B
: flowtime/tardiness timeseries of 

underbody b 

• F
c
/T

C
: flowtime/tardiness timeseries of 

underbody c 

• F
T
/T

T
: flowtime/tardiness timeseries of all the 

underbodies 

Three different groups of experiments are carried 

out (Table 1) for three different product mixes.  

Each group consists of 10 different experiments for 

10 different values of ρ, ranging from 0.1 up to 1, 

with a step of 0.1. 

The results of the analysis are presented with the 

help of Table 1 and the diagrams of figures 3 and 4.  

Table 1, includes the mean values of the Lempel Ziv 

Complexity for the flowtime and tardiness 

timeseries for both the assembly lines, of three 

different product mixes.  The diagrams in Figure 4 

illustrate the mean value of the LZ, coming from the 

analysis of the flowtime timeseries for both the 

assembly lines under three different product mixes.  

In particular, the diagram a presents the weighted 

complexity indicator, based on the flowtime of all 

the underbodies.  Figure 4b, illustrates the mean LZ 

of the flowtime timeseries of underbody a, b and c 

in the case of product mix a.  Similarly to diagram 

b, the diagrams c and d show the mean LZ in the 

case of product mix b and c respectively.  Figure 5, 

includes diagrams similar to those in figure 4, but in 

figure 5, it is a tardiness timeseries analysis 

illustrated, instead of the flowtime. 

4.1. ASSEMBLY LINES’ UNPREDICTABILITY 

The maximum mean value of the LZK complexity, 

i.e. 0,51 occurs in the case of product mix B for the 

assembly line A, based on the analysis of flowtime 

timeseries.  In general, the mean values of the LZK 

complexity of assembly line A, coming from the 

flowtime timeseries analysis, range from 0,07 up to 

0,51.  Similarly, assembly line B is characterized by 

the same range of the LZ flowtime mean values, 
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Figure 5 – Mean LZ complexity measures of flowtime analysis 

 

in particular, the LZ fluctuates between 0,06 and 

0,48.  Additionally, the average of LZ of the 

tardiness timeseries is characterized by low values. 

Specifically, the values are significantly close to 

zero, with a maximum of 0,18. 

A process that is least complex and predictable 

has an LZ value close to zero, whereas a process 

with the highest complexity and unpredictability-

randomness will have an LZ close to one.  A value 

of the LZ near to zero is associated with a simple 

deterministic process such a periodic motion, in 

contrast to a value near to one that is related toa 

stochastic and unpredictable process (Ferreira et al, 

2003).  Thus, both assembly lines A and B can be 

considered as deterministic systems of a low 

complexity and a high predictability, since the 

average LZ values are close to zero.  This 

ascertainment is in agreement with the 

characteristics of the assembly lines, since the 

process and setup times are deterministic fixed 

values, while the demand rate is also deterministic 

and periodic. 

4.2. FLEXIBILITY AND UNPREDICTABILITY 

The setup times of assembly line A are two times 

smaller than the setup times of assembly line B.  

This difference leads A to have higher flexibility 

than B.  In order for flexibility to be quantified, the 

FLEXIMAC (Alexopoulos et al, 2008) indicator is 

utilized and A and B are characterized by 0.2242 

and 0.0632 respectively.  It is evident from the 

diagrams of both figures 4 and 5 that flexibility is 

proportional to complexity.  Apart from one case in 

Figure 5b, the mean value of LZ of assembly line A 

is always higher than the respective LZ mean values 

of assembly line B.  Both flowtime and tardiness 

unpredictability is affected by flexibility.  Thus, a 

strong correlation between flexibility and 

complexity, in terms of unpredictability and 

randomness, is identified.  The relationship between 

flexibility and complexity can be useful during the 

design or the planning of a manufacturing system, 

indicating flexibility thresholds that should not be 

reached in order for any unpredictable running of 

the manufacturing system to be avoided.  Avoiding 

randomness in a manufacturing system, facilitates 

its successful monitoring and controlling. 

4.3. PRODUCT MIX AND 
UNPREDICTABILITY 

Assembly lines A and B are studied under three 

different product mixes.  The product mix A, 

consists of orders of underbodies a, b and c, in a 

ratio of 20%, 30% and 50% respectively.  The 

product mix B consists of equal underbody orders 

with a ratio of 33%. Finally, in the case of the 

product mix C, the underbody b orders ratio is much 

higher than that of the other two underbodies’ 
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orders ratio.  Specifically, the underbody orders of 

floor b is almost 80% while the ration of the 

underbodies a and c is 10%. 

The diagrams of figure 5, presenting the mean 

values of the LZ analysis of tardiness timeseries, 

indicate a relationship between the product mix and 

the unpredictability.  It is observed that the lower 

the underbody order ratio is the higher the mean 

LKZC value.   In particular, in the figure 5b, 

unpredictability is inversely proportional to the 

underbodies’ ratio.  A similar correlation is also 

shown in figures 5c and 5d.  In figure 5c, 

unpredictability fluctuates around 0,06 for all the 

underbodies, whose orders ratio is 33%.  The 

diagram d shows that tardiness unpredictability of 

the underbodies a and c is almost the same and 

much greater than the unpredictability of underbody 

b.  The underbodies a and c share the same orders’ 

ratio of 10% and the underbody orders ratio is 80%.  

It should be noted that this correlation, between 

unpredictability and product mix is observed only 

with the tardiness and not with the flowtime.  The 

diagrams of figure 4 that present the mean values of 

LZ of the flowtime timeseries do not reveal a 

connection between unpredictability and product 

mix. 

The relationship between the mean LZ of F
T
 and 

the mean LK complexity measure of F
A
, F

B
 & F

C
 

can be studied with the help of table 1.  The F
T
 

timeseries exhibit behaviour similar to that of the 

F
A
, F

B
 & F

C
 in terms of unpredictability.  The same 

remark can be made for the tardiness timeseries as 

well.  The values of the mean LZ of T
T
 T

A
, T

B
 and 

T
C
 timeseries fluctuate in the same range, without 

presenting great differences. 

 

Figure 6 – Design of Experiments 

5. DISCUSSION 

This paper proposes a new method of modelling 

and analysing the complexity of manufacturing 

systems from a performance indicators 

unpredictability point of view.  The assessment of 

unpredictability is based on the performance 

indicators timeseries analysis, with the use of the 

Lempel Ziv Kolmogorov Complexity measure.  The 

efficacy of the approach is presented with a case 

study from the automotive industry.  Two assembly 

lines, characterized by different flexibility, 

producing three underbodies are examined, under a 

range of demand rates and three different product 

mixes.  Both assembly lines present high 

predictability and can be characterized by low 

complexity.  The values of the mean LZ are in line 

with the characteristics of both the assembly lines 

which are deterministic.  A proportional relationship 

between the flexibility and the unpredictability is 

observed, after analysing the flowtime and tardiness 

timeseries.  This correlation of flexibility and 

complexity, in terms of unpredictability, can be 

useful for monitoring and controlling manufacturing 

systems, and it should be further and thoroughly 

studied.  Another correlation is also identified, this 

of the product mix and the unpredictability, but only 

in the case of the unpredictability of tardiness.  It is 

observed that the lower the ratio of the underbody 

orders is the higher its unpredictability.  
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