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ABSTRACT 

Instrument selection is deemed as a compulsory and critical process in automated inspection 

planning for large volume metrology applications. The process identifies the capable and suitable 

metrology devices with respect to the desired measurement tasks. Most research efforts in the past 

have focused on the probe selection for coordinate measuring machines (CMMs). However, 

increasing demand for accurate measurement in large scale and complex assembly and fabrication 

industries, such as aerospace and power generation makes these industries to invest in different 

measurement systems and technologies. The increasing number of systems with different 

capabilities create difficulties in selecting the most competent Large Volume Metrology Instrument 

(LVMI) for a given measurement task. Research in this area is sketchy due to having vast 

candidates of qualified instruments and at the same time the complexly of understanding their real 

capabilities. This paper proposes a two-phased approach to select the capable LVMIs and rank the 

LVMIs according to the pre-defined Measurability Characteristics (MCs). Intuitionistic fuzzy sets 

combined with TOPSIS method is employed to solve this vague and conflicting multi-criteria 

problem. A numerical case study is given to demonstrate the effectiveness of the system.  
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1. I�TRODUCTIO� 

In recent years Large Volume Metrology (LVM) has 

been rapidly advancing and widely applied in high 

value manufacturing industries such as aerospace, 

automotive and power generation, (Estler et al, 2002; 

Peggs et al, 2009). New development of LVM 

systems, their application techniques and 

performance evaluation methods paved the way for 

enhancing product performance and quality with 

reduced cost. Many efforts have been made to 

integrate measurement throughout manufacturing 

processes in order to maximize the benefits of the 

latest technologies  (Maropoulos et al, 2007 and 

2008). As a result, metrology is not only considered 

as a quality control manner but also an active 

element in the early design stages.  

Inspection process planning (IPP) has been 

demonstrated as an effective process to take 

metrology into account from the beginning of 

manufacturing processes (Li et al, 2004; Zhao et al, 

2009). Inspection plan is created along with product 

design, before the commence of any production 

activity.
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Figure 1 – Structure of the proposed instrument selection system in UML class diagram 

This approach can eliminate rework, reducing the 

possible negative impact engineering change. 

However research regarding LVM IPP was absent 

in the literature until Cai et al (2011) proposed the 

first systematic large volume metrology inspection 

system. Unlike probe selection in most IPP system 

for coordinate measuring machines (CMMs), 

selecting the suitable LVM instrument faces more 

complexity and vagueness due to the large number 

of available instruments and uncertain relationships 

among instrument performance criteria. Previous 

work (Cai et al, 2008 and 2010; Muelaner et al, 

2010) has successfully defined the process of 

measurability analysis. In this process a variety of 

criteria are specified with corresponding evaluation 

methods. Instrument selection is based on the result 

of measurability analysis although automation is 

severely limited. However, many task requirements 

and related importance, which is usually unequal, 

are ambiguous while defining the criteria. In 

addition, some parameters of alternative instruments 

cannot be quantified at this stage without detailed 

sampling strategy and instrument configuration e.g. 

inspection time and inspection cost. Vague 

relationship among criteria also leads to uncertain 

decision, such as the inherent trade-off relation 

between cost and uncertainty. In most applications, 

the selection process involves more than one 

decision maker (DM) e.g. designers and 

metrologists. The assigned preference of alternatives 

may be different due to the unique understanding of 

the task and unequal knowledge of the instruments. 

This leads to different assigned weights when the 

significance of different criteria is evaluated by 

DMs. It is therefore formulated as a multi-criteria 

multi-person decision making problem.  

Fuzzy set theory (FST) was first introduced by 

Zadeh (1965), with the objective of denoting 

vagueness and fuzziness in a set and processing the 

unquantifiable and incomplete information in 

decision problems. Fuzzy linguistic models enable 

the conversion of vague verbal expressions such as 

‘extremely’, ‘very’ and ‘medium’ into fuzzy 

numbers, which allows DMs to estimate the 

performance of alternatives and make decision 

based on quantitative data. Atanassov (1986) 

defined the concept of intuitionistic fuzzy set (IFS) 

as a generalization of FST, characterized by a 

membership function and a non-membership 

function. IFS with technique for order performance 

by similarity to ideal solution (TOPSIS) have 

recently attracted great attention in multi-attributes 

decision-making (MADM) process due to the 

consideration of both positive-ideal and negative-

ideal solution (Karsak, 2002; Bozdag et al, 2003; 

Chen et al, 2006; Boran et al, 2009; Onut et al, 
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2009). Precise decision can be made while 

conflicting criteria are assessed using different 

weights.   

A two-phased instrument selection system is 

proposed in this paper. System structure is presented 

using UML class diagram in Figure2. Measurability 

Characteristics (MCs) are identified and grouped 

into quantitative and qualitative attributes. Phase-1 

enables the filtration of instrument based on crisp 

requirements of the inspection task. The remaining 

instruments are assessed in Phase-2 according to 

qualitative criteria and a rank list of alternatives is 

given as the result.  

2. MEASURABILITY 

CHARACTERISTICS 

It is imperative to clearly identify the 

requirements of the measurement in order to select 

the appropriate instrument. Based on the previous 

work Cai et al (2008, 2010), Muelaner et al (2010), 

the proposed MCs are categorized into two groups 

to be assessed in two phases, respectively. For 

detailed definitions of MCs consult the above 

literature. 

2.1 Crisp Measurability Characteristics  

Crisp MCs are defined as Cci, which can be 

precisely assessed based on the following criteria: 

(a) the environmental conditions under which the 

inspection task will be carried out  for 

instance the temperature, altitude and 

humidity must meet the instrument specified 

capabilities ; 

(b) the inspection range or the distance of 

measurement points from the instrument ; 

(c) the material properties of the target product. 

For example magnetic targets can not be 

applied to aluminium or plastics and 

transparent or reflective surfaces cannot be 

scanned efficiently by some laser based 

measurement systems  

(d) the stiffness of the product, e.g. only non-

contact system can be deployed on product 

with high flexibility  due to undesired surface 

movements ; 

(e) the uncertainty requirement of the inspection, 

e.g. the uncertainty of the selected instrument 

should be confined by decision rules (BSISO 

12453-1; 1999ASME B89.7.3.1). 

2.2 Fuzzy Measurability Characteristics 

Criteria with vagueness are defined as Cfi: 

(a) the uncertainty capability of the chosen 

instrument; 

(b) overall cost of deploying the instrument 

which includes recurring cost e.g. purchasing 

the system and mandatory training, and non-

recurring cost e.g. maintenance, depreciation; 

(c) measurement speed; 

(d) Technology Readiness Level (TRL) of the 

instrument. 

It is uncertainly beneficial to define those fuzzy 

MCs due to the incomplete information at this early 

planning stage and conflicting relationship among 

them. For instance, uncertainty performance of most 

instruments is related to the measuring distance to 

the target, which is unknown without the detailed 

configuration and topological plan of a specific 

instrument. Measurement speed and cost can only 

be determined when both sampling strategy and 

system setup are available. In addition to that, a 

non-linear trade-off relationship exists between cost 

and uncertainty resulting in ambiguous decision.   

An attempt to use more accurate instrument has a 

potentially higher cost. 

Table 1 Example of crisp MCs 

3. PHASE 1: I�STRUME�T FILTRATIO� 

Figure 2 shows the algorithm of Phase 1 using 

UML activity diagram. The following steps detail 

the algorithm of instrument filtration. 

Step 1 Retrieving inspection requirements. 

In this step, inspection features extracted from 

design are retrieved individually with associated 

parameters. The task identification process is 

detailed in Cai et al (2011). Crisp MCs are then 

obtained accordingly and set as criteria Cci for later 

evaluation. Table 1 shows an example of interpreted 

crisp MCs. 

Step 2Filtering the instruments. 

A capable instrument list (CPL) and an incapable 

instrument list (IIL) are created to temporarily store 

the result, facilitating the filtration process. 

Instruments located in the large volume metrology 

instrument database are activated sequentially with 

associated specification Isi.  The data structure of the 

database shown in Figure 1 and Table 2 are given as 

Inspection ID 1 

Crisp MCs Details 

Environmental 
conditions 

Temperature 25° 

Altitude 500 m 

Humidity 35% 

Stiffness limitation contact& non-contact 

Material property magnet applicable  

Uncertainty requirement 0.2 mm 

Range 14m 
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Figure 2 UML activity diagram of Phase 1 

an example of FARO Laser Tracker. Comparisons 

are then carried out between Cci and Isi in such 

order: stiffness of the product, environmental 

conditions, material properties, uncertainty 

requirement and inspection range. By assessing the 

more obvious criteria first the sequence ensures that 

minimum comparing loops are employed. Once 

unsatisfied criterion is detected, Ii is removed from 

CIL to IIL and the rest of Cci are cancelled to save 

computational power.  
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Table 2 Stored data of FARO Laser Tracker  

Instrument ID 1 

Instrument Type Laser Tracker 

Maximum Operating 
Temperature 

50° 

Minimum Operating 
Temperature 

-15° 

Maximum Operating Altitude  2450 m 

Minimum Operating Attitude  -700 m 

Maximum Acceptable Humidity 95% non-condensing 

Minimum Acceptable Humidity 0 

Low reflective target no 

Magnetic target yes 

Range 55 m 

Uncertainty 

ADM: 16µm + 0.8µm/m 

Interferometer: 4µm + 

0.8µm/m 

 

The output of Phase 1 is a list with all capable 

instruments with respect to inspection tasks and it is 

passed to the next stage for further selection. 

4.PHASE 2: FUZZY I�STRUME�T 

SELECTIO� 

4.1 I�TUITIO�ISTIC FUZZY SETS 

Zadeh (1965) defined a fuzzy set � as: 

 � = {��
, ���
��|
 ∈ �}                     (1) 

 

where ���
�: � → [0,1]  is the membership 

function indicating the degree that element x 

belongs to the set A.  The closer the value of ���
� 

is to 1, the more 
 belongs to A.  

Intuitionistic fuzzy set A can be written as: 

 � = {��
, ���
�, ���
��|
 ∈ �}                  (2) 

 

where ���
�: � → [0,1]  is the membership 

function and ���
�: � → [0,1]is the non-membership 

function with the condition that 

 0 ≤ ���
� + ���
� ≤ 1                    (3) 

 

Another unique parameter !��
� known as the 

intuitionistic fuzzy index is defined as: 

 !��
� = 1 − ���
� − ���
�                (4) 

 

The multiplication operator of two IFSs A and B 

in a finite set X is defined as 

 �⨂$ = {����
� ∙ �&�
�, ���
� + �&�
� − ���
� ∙�&�
�|
 ∈ �}                                      (5) 

4.2 IFSs I�STRUME�T SELECTIO� 

Boran et al (2009) and Onut et al (2009) 

proposed similar approaches to solve the MADM 

supplier selection problem using TOPSIS. IFSs 

were utilized to select the appropriate supplier by 

aggregating individual opinions of DMs for 

weighting the importance of both criteria and 

alternatives (Boran et al, 2009). Their research 

results demonstrated the effectiveness of the 

approach. A similar method is adopted in this work. 

The following steps detail the algorithm and process 

of applying IFSs to instrument selection. 

Step 1 Modelling the MADM problem.  

(a) Let the capable alternative instruments stored 

in CIL from Phase 1 be a finite set ' = {'(, '), … , '+}. 
(b) Let the fuzzy MCs be a finite criteria set , = {,(, ,), … , ,-} , which includes instrument 

uncertainty, overall cost, inspection speed and TRL. 

(c) Let . = {.(, .), … , ./} be the decision maker 

set including both designers and metrologists in the 

decision making process.   

(d) Let 0�1� = �234�1��-×+  denote the 6 × 7 

decision matrix of kth decision maker, where 234 is 

the performance rating of alternative instrument '3with respect to criterion ,4. 

(e) Alternative instruments are linguistically rated 

by DMs using terms defined in Table 3. The 

importance of DMs is evaluated using the linguistic 

term in Table 4, where the typical converged IFNs 

are also given.  

Table 3 Linguistic Performance and IF�s 

Linguistic Performance Evaluation IF�s 

Extremely good (EG)/extremely high (EH) (1.00,0.00) 

Very good (VG)/very high (VH) (0.80,0.10) 

Good (G)/high (H) (0.70,0.20) 

Fair (F)/medium (M) (0.50,0.40) 

Bad (B)/low (L) (0.25,0.60) 

Table 4 Linguistic Importance and IF�s 

Linguistic Importance IF�s 

Very Important (0.90,0.10) 

Important (0.75,0.20) 

Medium (0.50,0.45) 

Unimportant (0.35,0.60) 

Very Unimportant (0.10,0.90) 

 

Step 2 Assigning linguistic importance to designers 

and metrologists, and calculating the corresponding 

weights. 

Let 89: = [�1, �1 , !1]  be the intuitionistic fuzzy 

rating of kth decision maker using linguistic term 

and the weight of kth decision maker is calculated 

as: 
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;1 = < =:=:>?:@
∑ BC:DE:< =:=:>?:@FG:HI                      (6) 

 

where 0 ≤ ;1 ≤ 1 and ∑ ;1 = 1/1J( . 

Step 3 Aggregating the decision matrix with 

respect to the individual performance rating of 

decision makers. 

Having fused individual opinion 0�1�  from all 

weighted DMs, group opinion is aggregated as the 

intuitionistic fuzzy decision matrix. IFWA operator 

is utilized in the aggregation process proposed by 

Xu (2007a and 2007b). 

            234 = 'K8�LM234�(�, 234�)�, … , 234�/�N 

= [1 − OM1 − �34�1�NL: ,/
1J( OM�34�1�NL: ,/

1J(  

∏ M1 − �34�1�NL: − ∏ M�34�1�NL:/1J(/1J( ]          (7) 

 

The matrix is then written as  

 

0 = Q2((2)(2()2)) …… 2(-2)-⋮       ⋮ ⋱ ⋮2+(2+) ⋯ 2+-
U                     (8) 

 

where 234 = ��VW�
4�, �VW�
4�, !VW�
4��. 

Step 4 Assigning linguistic importance to the 

criteria and calculating the corresponding weights. 

The system allows decision makers to assign 

different weights to each criterion, which is a key 

advantage for emphasizing the vague relation 

existing among criteria, e.g. uncertainty, inspection 

speed and cost.  

It is assumed that the kth decision maker weights 

the jth criterion with an intuitionistic number X4 �1� = Y�4�1�, �4�1�, !4�1�Z. The overall weight of the jth 

criterion is calculated using IFWA operator: 

 

     X4 = 'K8�[MX4�(�, X4�)�, … , X4�/�N 

= [1 − OM1 − �34�1�NL: ,/
1J( OM�34�1�NL: ,/

1J(  

∏ M1 −  �34�1�NL: − ∏ M�34�1�NL:/1J(/1J( ]        (9) 

 

and the weight matrix is then formed as  

 8 = [X(, X), … , X4]                      (10) 

 

where X4 = ��4 , �4 , !4�. 

Step 5 Creating the weighted decision matrix by 

aggregating P and W. 

P and W are multiplied using Eq.5 resulting in the 

weighted intuitionistic fuzzy decision matrix: 

 0⨂8 = {��
, �VW�
� ∙ �\�
�, �VW�
� + �\�
� − �VW�
� ∙�\�
��]
 ∈ �}                                         (11) 

 

The matrix is then written as  

 

0′ = Q_′((_′)(
_′()_′))

…… _′(-_′)-⋮       ⋮ ⋱ ⋮_′+(_′+) ⋯ _′+-
U                (12) 

 

and 

 !VW\M
4N = 1 − �VW�
� ∙ �\�
� − �VW�
� − �\�
� +�VW�
� ∙ �\�
�                                  (13) 

 

where 2′34 = ��VW\�
4�, �VW\�
4�, !VW\�
4��. 

Step 6 Calculating the separation distance of each 

alternative to positive-ideal solution and negative-

ideal solution. 

Criteria such as uncertainty, TRL and speed 

denoted by ,& are beneficial while rating the 

alternative instruments. By contrast, the overall cost 

is considered as cost criterion denoted by ,` . The 

intuitionistic fuzzy positive-ideal solution '∗ and 

negative-ideal solution'b are defined as: 

 '∗ = ��V∗\�
4�, �V∗\�
4��                 (14) 

 'b = ��Vc\�
4�, �Vc\�
4��                (15) 

 

where 

 �V∗\M
4N = M6d
 �VW\M
4N|e ∈�,&N, M6f7 �VW\M
4N|e ∈�,`N �V∗\M
4N = M6f7 �VW\M
4N|e ∈�,&N, M6d
 �VW\M
4N|e ∈�,`N �Vc\M
4N = M6f7 �VW\M
4N|e ∈�,&N, M6d
 �VW\M
4N|e ∈�,`N �Vc\M
4N = M6d
 �VW\M
4N|e ∈�,&N, M6f7 �VW\M
4N|e ∈�,`N 

 

Normalized Euclidean distance is adopted in this 

paper to measure the separation between 

alternatives and positive-ideal solution '∗ and 

negative-ideal solution'b as .3∗ and.3b: 

 .3∗ = 2g34 − '∗ = 

h ()+ ∑ i��VW\M
4N − �V∗\M
4N�) + � �VW\M
4N − �V∗\M
4N�)+�!VW\M
4N − !V∗\M
4N�) j+4J(
(16) 

and 

 .3b = 2g34 − 'b = 
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h ()+ ∑ i��VW\M
4N − �Vc\M
4N�) + � �VW\M
4N − �Vc\M
4N�)+�!VW\M
4N − !Vc\M
4N�) j+4J(  

(17) 

 

Step 7 Ranking the alternative instruments based 

on the relative closeness coefficient. 

All instruments are then scored with the relative 

closeness coefficient k,3with respect to the positive-

ideal solution: 

 k,3 = 9Wc9WcD9W∗                                 (18) 

 

The candidates are then ranked according to the 

value of k,3. Higher score indicates more suitability 

of the corresponding alternative instrument. 

The algorithm of Phase 2 is shown in Figure 3 

and the most suitable instrument is highlighted as 

the result of instrument selection process.  

5. �UMERICAL CASE STUDY 

An instrument is required for an inspection task 

and the crisp MCs is shown in Table 1. Available 

instruments stored in database include 2 laser 

trackers, 2 laser scanners, laser radar, iGPS and 

photogrammetry system. The filtration process is 

implemented as follows: 

(a) photogrammetry system is removed from 

CIL due to insufficient range coverage. 

(b) laser scanners and iGPS are filtered out due 

to unsatisfied uncertainty requirement. 

Under this circumstance, 2 laser trackers and 

laser radar have remained from Phase 1, as the 

alternative instruments: 

 

I1: Laser Tracker 1 

I2: Laser Tracker 2 

I3: Laser Radar 

 

One designer (DM1) and two metrologists (DM2 

and DM3) are involved in the performance 

evaluation process based on the four fuzzy MCs： 

 

C1: Instrument uncertainty 

C2: Overall cost 

C3: Inspection Speed 

C4: TRL 

 

The process of fuzzy instrument selection is 

consisted of the following steps: 

Step 1Assigning linguistic importance to DMs 

and calculating the corresponding weights. 

Each DM is assigned with a linguistic importance 

term shown in Table 6. This process is based on the 

degree of knowledge possessed by DMs regarding 

specific inspection task and instrument. 

Corresponding weights are obtained using Eq.6. 

Step 2 Aggregating the decision matrix with 

respect to the individual performance rating of 

decision maker. 

The performance rating from each DM is shown 

in Table 7. 

Table 6 DMs importance and corresponding weights 

 DM1 DM2 DM3 

Linguistic 
importance 

Important Very important Medium 

Weight 0.356 0.406 0.238 

 

Table 7 Performance rating of alternatives 

Criteria Instrument DM1 DM2 DM3 

C１ 

uncertainty 

I1 EG EG VG 

I2 VG G VG 

I3 G G F 

C２ 

cost 

I1 VH VH H 

I2 M H M 

I3 EH EH EH 

C３ 

speed 

I1 VG F F 

I2 G G F 

I3 VG EG VG 

C４ 

TRL 

I1 VG EG VG 

I2 G VG G 

I3 F G B 

 

 

The linguistic ratings are then converted to IFNs 

using Table 3. The intuitionistic fuzzy decision 

matrix is calculated according to Eq.7: 

 

 

C1 C2 C3 C4  

0 = l�1.000,0.000,1.000� �0.780,0.118,0.662� �0.639,0.244,0.395� �1.000,0.000,1.000��0.764,0.133,0.632� �0.594,0.302,0.292��0.661,0.236,0.426� �1.000,0.000,1.000� �0.594,0.302,0.292� �0.746,0.151,0.595��1.000,0.000,1.000� �0.553,0.332,0.220�p I1 
I2 

I3 
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Figure 3 UML activity diagram of Phase 2

Step 3 Calculating the aggregated weight of criteria 

The assigned importance by DMs with respect to 

each criterion is shown in Table ８with converted 

corresponding IFNs. 

The weight matrix is aggregated using Eq.9 as: 

 8 = [X`I , X`q , X`r , X`s] 
 

= Q�0.861,0.128,0.011��0.787,0.189,0.023��0.799,0.170,0.031��0.576,0.371,0.053�U
t
 

 

Step 4 Creating the weighted decision matrix by 

aggregating matrices P and W. 

With the constructed intuitionistic fuzzy decision 

matrix P and weights matrix W, the aggregated 

weighted decision matrix 0′ is established using Eq.
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                             C1 C2 C3 C4  

0′ = l�0.861,0.128,0.011� �0.614,0.285,0.102� �0.511,0.373,0.117� �0.576,0.371,0.053��0.658,0.224,0.098� �0.467,0.434,0.099��0.569,0.334,0.097� �0.787,0.189,0.024� �0.474,0.421,0.105� �0.429,0.466,0.105��0.799,0.170,0.031� �0.318,0.580,0.102�p   I1 
I2 

I3 

 

Table 8 Assigned importance for all criteria 

Criteria DM1 DM2 DM3 

C1 
I VI VI 

(0.75,0.2) (0.90,0.10) (0.90,0.10) 

C2 
VI I M 

(0.90,0.10) (0.75,0.2) (0.50,0.45) 

C3 
I I VI 

(0.75,0.2) (0.75,0.2) (0.90,0.10) 

C4 
M M I 

(0.50,0.45) (0.50,0.45) (0.75,0.2) 

 

Step 5 Calculating the separation distance of each 

alternative to positive-ideal solution and negative-

ideal solution. 

In this case, uncertainty, TRL and speed are 

considered as beneficial criteria and cost is deemed 

as cost criterion. Therefore, ,& = [,(, ,u, ,v ] and ,w = [,)] . The intuitionistic fuzzy positive-ideal 

solution'∗and negative-ideal solution'b are obtained 

as: 

 '∗ = {�0.861,0.128,0.011�, �0.467,0.434,0.099�, �0.799,0.170,0.031�, �0.576,0.371,0.053�} 

 'b = {�0.569,0.334,0.097�, �0.787,0.189,0.024�, �0.474,0.421,0.105�, �0.318,0.580,0.102�} 

 

Normalized Euclidean distance is obtained to 

measure the separation between alternatives and 

positive-ideal solution '∗and negative-ideal solution 'b using Eq.16 and Eq.17in Table 9. 

Table 9 Separation measure and relative closeness 

coefficient 

Instruments D* D− RC 

I1 0.148 0.192 0.565 

I2 0.183 0.162 0.469 

I3 0.228 0.147 0.393 

 

Step 6 Ranking the alternative instruments based 

on the relative closeness coefficient. 

All instruments are then scored with the relative 

closeness coefficient k,3with respect to the positive-

ideal solution shown in Table 9. The ranking order 

is '( ≻ ') ≻ 'u and I1 is selected as the most 

appropriate instrument in the alternatives since it 

has the highest RC.  

 

With the interest of demonstrating the sensitivity 

of the decision model, a different importance set is 

assigned to all criteria shown in Table 10 and the 

results are given in Table 11.  

Table 10 Assigned importance for all criteria-case 2 

Criteria DM1 DM2 DM3 

C1 
I I I 

(0.75,0.2) (0.75,0.2) (0.75,0.2) 

C2 
VI I M 

(0.90,0.10) (0.75,0.2) (0.50,0.45) 

C3 
VI VI VI 

(0.90,0.10) (0.90,0.10) (0.90,0.10) 

C4 
M M I 

(0.50,0.45) (0.50,0.45) (0.75,0.2) 

Table 11 Separation measure and relative closeness 

coefficient-case2 

Instruments D* D− RC 

I1 0.168 0.165 0.495 

I2 0.182 0.153 0.456 

I3 0.157 0.178 0.531 

 

The inspection speed is considered more 

important than in the previous case while less 

importance is given to inspection uncertainty. This 

shifting leads to a clearly different decision as I3is 

ranked first due to its significantly higher rating 

than I1and I2in terms of measurement speed. The 

decision model is successfully aware of this priority 

change of criteria and reveals the correct selection 

result.  

6. CO�CLUSIO� 

The recent developments of inspection process 

planning methodology demands instrument 

selection as a mandatory and vital process, which 

paves the way for subsequent planning activities. 

Nevertheless, the measurement device selection for 

large volume metrology (LVM) is rarely studied 

while most research efforts focusing on the probe 

selection for coordinate measuring machines. The 

large and increasing number of available 

instruments with a variety of assessing criteria 

presents a barrier to an applicable selection system. 

A two-phased LVM instrument selection system 

using intuitionistic fuzzy sets combined with 

TOPSIS method is described in this paper. 

Measurability Characteristics (MCs) are first 

identified with respect to specific inspection task 

and grouped into quantitative (crisp) and qualitative 

(fuzzy) attributes. An instrument filtration 

procedure is implemented in Phase 1 based on the 
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results of assessing crisp MCs. In the second phase, 

the remaining instruments are ranked using 

intuitionistic fuzzy group decision-making method. 

Vague criteria are appropriately assessed in this 

early stage by taking advantage of linguistic 

importance and performance rating.  

A numeric case study shows the process of the 

proposed approach. Furthermore, the sensitivity of 

the decision model to the variable priority of the 

criteria has been successfully demonstrated. 
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