
Mechanics in deforming processes 

 

Introduction 

Deforming processes convert the original shape of a solid to another shape without changing 

its mass or material composition. During this process, cohesion is maintained among 

particles. 

The relation between stress and strain for most solids is graphically described in Figure 1: 

 

Figure 1: Stress-strain relationship. 

1. For stress smaller than the point (A) of proportionality, stress and strain are 

proportional. Specifically σ=Eε, where E is Young’s modulus. This is the elastic region 

2. For stress larger than the proportionality limit, but smaller than the offset yield 

(point B), there is plastic deformation. In case of no more force is applied, the strain 

may follow a curve parallel to the elastic region, as indicated in Figure 1 by the 

dashed curve BX. 

3. For stress larger than the offset yield, but smaller than the Extension-under-load 

(EUL) yield strength (point C), there is reduction of strain when force is no more 

applied, but not parallel to the elastic curve. 

4. For stresses larger than the EUL yield strength, the whole strain generated by the 

applied stress remains as plastic deformation. Stress increases until it reaches the 

tensile strength. Further deformation does not correspond to further increase in the 

required stress, until it reaches the fracture point (the endpoint of Figure 1 curve). 

Depending on the material and the region of the curve of Figure 1, several approximations 

to the curve of Figure 1 can be used. Such approximations are shown in Figure 2.  



 

Figure 2: Models of stress-strain relationship. 

The term stress (s) is used to express the loading in terms of force applied to a certain cross-

sectional area of an object. From the perspective of loading, stress is the applied force or 

system of forces that tends to deform a body. From the perspective of what is happening 

within a material, stress is the internal distribution of forces within a body that balance and 

react to the loads applied to it. The stress distribution may or may not be uniform, 

depending on the nature of the loading condition. For example, a bar loaded in pure tension 

will essentially have a uniform tensile stress distribution. However, a bar loaded in bending 

will have a stress distribution that changes with distance perpendicular to the normal axis. 

Some common measurements of stress are: 

Psi = lbs/in2 (pounds per square inch) 

ksi or kpsi = kilopounds/in2 (one thousand or 103 pounds per square inch) 

Pa = N/m 2 (Pascals or Newtons per square meter) 

kPa = Kilopascals (one thousand or 103 Newtons per square meter) 

GPa = Gigapascals (one million or 106 Newtons per square meter) 

Stresses in most 2-D or 3-D solids are complex and need to be defined methodically. The 

internal force acting on a small area of a plane can be resolved into three components: one 

normal to the plane and two parallel to the plane. The normal force component divided by 

the area gives the normal stress (s), and parallel force components divided by the area give 

the shear stress (t). These stresses are average stresses as the area is finite, but when the 

area approaches zero, the stresses become stresses at a point. Since stresses are defined in 

relation to the plane that passes through the point under consideration, and the number of 

such planes is infinite, there appear an infinite set of stresses at a point. It can be proven 

that the stresses on any plane can be computed from the stresses on three orthogonal 

planes passing through the point. As each plane has three stresses, the stress tensor has 

nine stress components, which completely describe the state of stress at a point. 



 

Figure 3a: Stresses in a Solid 

 

Figure 3b: Stresses on an infinitesimal part of a material. 

As visible in Figure 3b, in order to completely describe the stresses, nine quantities have to 

be determined. They can be organized in the form of a matrix, like 
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21 22 23

31 32 33

  

   

  

 
 

  
 
 

  

Due to physical reasons (conservation of angular momentum), the stress tensor is 

symmetric. Since the matrix is symmetric, its eigenvalues are real, they are called the 

principal stresses and notated as σ1, σ2 and σ3, or σx, σy and σz. 

Strain is the response of a system to an applied stress. When a material is loaded with a 

force, it produces a stress, which then causes a material to deform. Engineering strain is 

defined as the amount of deformation in the direction of the applied force divided by the 

initial length of the material. This results in a number without units, although it is often left 

in a form, such as inches per inch or meters per meter. For example, the strain in a bar that 



is being stretched in tension is the amount of elongation or change in length divided by its 

original length. As in the case of stress, the strain distribution may or may not be uniform in 

a complex structural element, depending on the nature of the loading condition 

 

 

Figure 4: Strains on a 2D infinitesimal part of a material. 

As shown in Figure 4, the strain, like the stress, can be organized in the form of a matrix. 

Figure 4 shows the strain for a two dimensional problem; in general, for a three dimensional 

problem the strain can be organized as 
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Ultimate tensile strength (UTS), often shortened to tensile strength (TS) or ultimate strength, 

is the maximum stress that a material can withstand while being stretched or pulled before 

failing or breaking. Tensile strength is not the same as compressive strength and the values 

can be quite different. It is the strength at point C of Figure 1 and is usually notated by    or 

  . 

Yielding 

Yielding is a particular point at the stress - strain curve, where the plastic behavior begins.  

This happens typically at 0.2% strain. There are several criteria for identifying the conditions 

of yielding: 

Maximum Principal Stress: 

Plastic deformation starts when the maximum of the principal stresses σ exceeds a given 

threshold:      .  



 

Figure 5: Maximum stress criterion (Yielding notated by circle). 

Tresca Criterion: 

A threshold is set for the shear stress (dislocation). Plastic deformation is considered to 

occur when         . 

 

Figure 6: Tresca criterion for the case of Figure 3 (         ). 

von Mises Criterion: 

Plastic deformation is considered occurring when σv>σy, 

where σv is the von Mises stress or equivalent tensile stress which is defined as

. 



The von Mises criterion is an energy-related criterion, as the square of the stresses is 

involved. 

 

Figure 7: von Mises and Tresca criteria comparison for the case of Figure 3. 

Bending Model 

Figure 8 depicts the geometry of V-bending process in the x-y plane. A three point bending is 

taking place (two supports and one ram) and the result is bending the sheet forming to a 

desired angle. Technically, the depth (z dimension) is considered to be much larger than the 

other dimensions and every measure is expressed per unit of depth. This state is called 

"plane strain". Thus, every strain component involving z is equal to zero. Also, all the cross 

terms are set equal to zero, as the coordinate system (x,y) is supposed to be local at every 

point of the bended area. 

 

Figure 8: Bending Geometry. 

One assumption is that plane normal section remains plane and normal. 

Also, if lo is the original length at the center, then line CDo may change its length to CD and it 

is stretched to a new length ls during bending (Figure 9): 

      

The line AB0 (Figure 9) at the distance y from the center will deform to AB: 



                   

 

Figure 9: Bending Geometry Detail. 

The axial strain at the line AB is 
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where: 

 εα is the strain at the middle surface or the membrane strain 

 εb is the so called bending strain  

Finally, one can claim that where the radius of the curvature is large compared with the 

thickness, the bending strain can be simplified: 
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Figure 10: Linear approximation of the strain distribution at plane normal section. 

Finally, there are considered to be three components of stress and strain. Concerning the 

strains, since an incompressible material is considered, the following relation 

(incompressibility condition) has to be taken into consideration: 

           

So, one can easily derive that: 

       

As far as the stresses are concerned, only pure bending moments are concerned, thus: 

     

Regarding the other two components, the following formula has to be used: 

         

As    , one has to define a Poisson ratio for the case of incompressibility, thus a value of ½ is 

used. 

  



Bending Numerical Example 

In the following figure, the geometry is set. Also, in the following table, the data of the 

problem are given. What is asked is the Force P that achieves a bending of      . 

Description Variable Value 

Final bending angle             

Thickness of metal sheet t 1 mm 

Material model (annealed 
304 stainless steel, strain 

hardening model of Figure 2) 

      K=430 MPa, n=0.45 

Radius of Ram nose R 2 mm 

Friction Coefficient   0.15 

Distance between    and                  8 mm 

 

 

Figure 11: Bending geometry for numerical example  

From the equilibrium of forces in the y direction (for the whole body), this is what is derived: 

        
 

 
     

 

 
  

From the equilibrium of moments of the C2B2 part, the following formula is obtained: 

  
   

     
 

Regarding the length     , taking into account Figure 12, it can be computed using: 



              
 

 
 
 

 
 

 

Figure 12: Detail in geometry 

Then, using the fact that                              
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The bending moment is given by the following relationship: 

          

   

 

      
    

   

 

     
 

  
 
 

   

   

 

   
 

  
 
     

         
   

          

 

In continuation,  

           

and finally: 

         
 

Assumptions that were taken into consideration: 

 

 

 



 

 

 The area outside the supports    &    is not of any interest. 

 The forces create only bending moment 

 The outer curvature of the work-piece is driven by the ram 

 The area outside bending remained rigid, whilst the bended area is plastic and is 

governed by power law stress-strain relationship. 

 There is no spring-back effect 

 Along the curved area, moment remains constant 

 There are no thermal terms in modeling 

 Every measure is calculated per unit of depth (plane strain) 

 

Upsetting Model 

Upsetting is a different deforming process, used to change the shape of a workpiece, as 

shown in Figure 13. Because of the geometry of the problem polar cylindrical coordinates 

will be used. 

 

Figure 13: Upsetting 

The determination of upsetting forces is given by the equilibrium in the radial direction, in 

the case of Figure 14. 

                               
  

 
                

Assuming that      , that        and if all higher order derivatives second rank 

variations are set equal to zero, then one comes up with: 

   
  

 
  

 
     

Then, applying the Tresca yield criterion one finds: 

         

the following equation comes up: 



   
  

 
  

 
   

  

 
   

 

Figure 14: Modeling Upsetting  

 

The solution to this differential equation using the boundary condition             is the 

following: 

        
  
 
 
 
 
   

           
  
 
 
 
 
   

 

Using the Taylor expansion, the following formula can be valid: 

         
  

 
 
 

 
     

Also, it is worth mentioning that in the case of frictionless upsetting, 
   

  
  , thus       . 

Upsetting Numerical Example #1 

Using the following values, a numerical example is formed. 

Description Variable Value 

Initial height    8 cm 

Final height   6 cm 

Initial radius    5 cm 

Friction Coefficient   0.5 

Yield Strength for Steel    300 MPa 

 

The upsetting force is equal to: 



           
  

 

   

 

         
  

 
 
 

 
         

  

 

   

 

 

           
  

 
 
 

 
       

   

 

 

        
  

 
 
   

   
  

Making use of the fact that  

   
                  

     

the force is found to be equal to: 

        
         

 

 
 
         

  

   
           

 

Upsetting Numerical Example #2: Upsetting a nail 

Using the following values, a numerical example is formed. 

Description Variable Value 

Initial height    0.5 mm 

Final height   0.2 mm 

Initial radius    1 mm 

Friction Coefficient   0.5 

Yield Strength for Steel    300 MPa 

 

The upsetting force is found to be equal to: 

        

 

 


